A112926
Smallest squarefree integer > the n-th prime.
Original entry on oeis.org
3, 5, 6, 10, 13, 14, 19, 21, 26, 30, 33, 38, 42, 46, 51, 55, 61, 62, 69, 73, 74, 82, 85, 91, 101, 102, 105, 109, 110, 114, 129, 133, 138, 141, 151, 154, 158, 165, 170, 174, 181, 182, 193, 194, 199, 201, 213, 226, 229, 230, 235, 241, 246, 253, 258, 265, 271, 273
Offset: 1
10 is the smallest squarefree number greater than the 4th prime, 7. So a(4) = 10.
From _Gus Wiseman_, Dec 07 2024: (Start)
The first number line below shows the squarefree numbers. The second shows the primes:
--1--2--3-----5--6--7-------10-11----13-14-15----17----19----21-22-23-------26--
=====2==3=====5=====7==========11====13==========17====19==========23===========
(End)
A005117 lists the squarefree numbers.
Cf.
A007674,
A013928,
A053797,
A053806,
A072284,
A073247,
A175216,
A280892,
A345531,
A378032,
A378618.
-
with(numtheory): a:=proc(n) local p,B,j: p:=ithprime(n): B:={}: for j from p+1 to p+20 do if abs(mobius(j))>0 then B:=B union {j} else B:=B fi od: B[1] end: seq(a(m),m=1..75); # Emeric Deutsch, Oct 10 2005
-
Do[k = Prime[n] + 1; While[ !SquareFreeQ[k], k++ ]; Print[k], {n, 1, 100}] (* Ryan Propper, Oct 10 2005 *)
With[{k = 120}, Table[SelectFirst[Range[Prime@ n + 1, Prime@ n + k], SquareFreeQ], {n, 58}]] (* Michael De Vlieger, Aug 16 2017 *)
-
a(n,p=prime(n))=while(!issquarefree(p++),); p \\ Charles R Greathouse IV, Aug 16 2017
A377283
Nonnegative integers k such that either k = 0 or there is a perfect power x in the range prime(k) < x < prime(k+1).
Original entry on oeis.org
0, 2, 4, 6, 9, 11, 15, 18, 22, 25, 30, 31, 34, 39, 44, 47, 48, 53, 54, 61, 66, 68, 72, 78, 85, 92, 97, 99, 105, 114, 122, 129, 137, 146, 154, 162, 168, 172, 181, 191, 200, 210, 217, 219, 228, 240, 251, 263, 269, 274, 283, 295, 306, 309, 319, 327, 329, 342, 357
Offset: 1
The first number-line below shows the perfect powers. The second shows each positive integer k at position prime(k).
-1-----4-------8-9------------16----------------25--27--------32------36----
===1=2===3===4=======5===6=======7===8=======9==========10==11==========12==
A version for squarefree numbers is
A377431.
Positions of positive terms in
A377432 (counts perfect powers between primes).
The case of a unique choice is
A377434 (a subset).
The complement (no choices) is
A377436.
The case of at least two choices is
A377466 (a subset).
Positions of last appearances in
A378249.
A069623 counts perfect powers <= n.
A131605 lists perfect powers that are not prime powers.
Cf.
A000015,
A045542,
A065514,
A076412,
A081676,
A188951,
A216765,
A345531,
A377468,
A378035,
A378250.
-
perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
Select[Range[0,100],#==0||Length[Select[Range[Prime[#]+1,Prime[#+1]-1],perpowQ]]>0&]
A378035
Greatest perfect power < prime(n).
Original entry on oeis.org
1, 1, 4, 4, 9, 9, 16, 16, 16, 27, 27, 36, 36, 36, 36, 49, 49, 49, 64, 64, 64, 64, 81, 81, 81, 100, 100, 100, 100, 100, 125, 128, 128, 128, 144, 144, 144, 144, 144, 169, 169, 169, 169, 169, 196, 196, 196, 216, 225, 225, 225, 225, 225, 243, 256, 256, 256, 256
Offset: 1
The first number line below shows the perfect powers.
The second shows each positive integer k at position prime(k).
-1-----4-------8-9------------16----------------25--27--------32------36----
===1=2===3===4=======5===6=======7===8=======9==========10==11==========12==
Restriction of
A081676 to the primes.
Positions of last appearances are also
A377283.
A version for squarefree numbers is
A378032.
Terms appearing exactly once are
A378355.
A069623 counts perfect powers <= n.
A131605 lists perfect powers that are not prime powers.
Cf.
A000015,
A007918,
A031218,
A045542,
A052410,
A065514,
A076412,
A188951,
A216765,
A345531,
A377434,
A378250.
-
radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
Table[NestWhile[#-1&,Prime[n],radQ[#]&],{n,100}]
-
a(n) = my(k=prime(n)-1); while (!(ispower(k) || (k==1)), k--); k; \\ Michel Marcus, Nov 25 2024
-
from sympy import mobius, integer_nthroot, prime
def A378035(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return int(x-1+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
m = (p:=prime(n)-1)-f(p)
return bisection(lambda x:f(x)+m,m,m) # Chai Wah Wu, Nov 25 2024
A378249
Least perfect power > prime(n).
Original entry on oeis.org
4, 4, 8, 8, 16, 16, 25, 25, 25, 32, 32, 49, 49, 49, 49, 64, 64, 64, 81, 81, 81, 81, 100, 100, 100, 121, 121, 121, 121, 121, 128, 144, 144, 144, 169, 169, 169, 169, 169, 196, 196, 196, 196, 196, 216, 216, 216, 225, 243, 243, 243, 243, 243, 256, 289, 289, 289
Offset: 1
The first number line below shows the perfect powers. The second shows each prime.
-1-----4-------8-9------------16----------------25--27--------32------36------------------------49--
===2=3===5===7======11==13======17==19======23==========29==31==========37======41==43======47======
A version for prime powers (but starting with prime(k) + 1) is
A345531.
A069623 counts perfect powers <= n.
A131605 lists perfect powers that are not prime powers.
-
radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
Table[NestWhile[#+1&,Prime[n],radQ[#]&],{n,100}]
-
f(p) = p++; while(!ispower(p), p++); p;
lista(nn) = apply(f, primes(nn)); \\ Michel Marcus, Dec 19 2024
A378250
Perfect-powers x > 1 such that it is not possible to choose a prime y and a perfect-power z satisfying x > y > z.
Original entry on oeis.org
4, 8, 16, 25, 32, 49, 64, 81, 100, 121, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849, 1936
Offset: 1
The first number line below shows the perfect-powers. The second shows the primes. The third is a(n).
-1-----4-------8-9------------16----------------25--27--------32------36----
===2=3===5===7======11==13======17==19======23==========29==31==========37==
4 8 16 25 32
The terms together with their prime indices begin:
4: {1,1}
8: {1,1,1}
16: {1,1,1,1}
25: {3,3}
32: {1,1,1,1,1}
49: {4,4}
64: {1,1,1,1,1,1}
81: {2,2,2,2}
100: {1,1,3,3}
121: {5,5}
128: {1,1,1,1,1,1,1}
144: {1,1,1,1,2,2}
169: {6,6}
196: {1,1,4,4}
216: {1,1,1,2,2,2}
225: {2,2,3,3}
243: {2,2,2,2,2}
256: {1,1,1,1,1,1,1,1}
A version for prime-powers (but starting with prime(k) + 1) is
A345531.
A069623 counts perfect-powers <= n.
A131605 lists perfect-powers that are not prime-powers.
Cf.
A000015,
A007918,
A023055,
A045542,
A052410,
A076412,
A188951,
A216765,
A377431,
A377434,
A377468.
-
radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
Union[Table[NestWhile[#+1&,Prime[n],radQ[#]&],{n,100}]]
A378356
Prime index of the next prime after the n-th perfect power.
Original entry on oeis.org
1, 3, 5, 5, 7, 10, 10, 12, 12, 16, 19, 23, 26, 31, 31, 32, 35, 40, 45, 48, 49, 54, 55, 62, 67, 69, 73, 79, 86, 93, 98, 100, 106, 115, 123, 130, 138, 147, 155, 163, 169, 173, 182, 192, 201, 211, 218, 220, 229, 241, 252, 264, 270, 275, 284, 296, 307, 310, 320
Offset: 1
A069623 counts perfect powers <= n.
A378249 gives the least perfect power > prime(n), restriction of
A377468.
Cf.
A045542,
A052410,
A065514,
A068361,
A076412,
A081676,
A216765,
A345531,
A377283,
A378035,
A378250,
A378251,
A378253.
A378355
Numbers appearing exactly once in A378035 (greatest perfect power < prime(n)).
Original entry on oeis.org
125, 216, 243, 64000, 1295029, 2535525316, 542939080312
Offset: 1
We have 125 because 127 is the only prime between 125 and 128.
Swapping primes and perfect powers gives
A379154, unique case of
A377283.
A069623 counts perfect powers <= n.
Cf.
A000961,
A031218,
A045542,
A052410,
A067871,
A076412,
A080769,
A131605,
A188951,
A216765,
A378250,
A378356.
-
radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
y=Table[NestWhile[#-1&,Prime[n],radQ[#]&],{n,1000}];
Select[Union[y],Count[y,#]==1&]
A378253
Perfect powers p such that there are no other perfect powers between p and the least prime > p.
Original entry on oeis.org
1, 4, 9, 16, 27, 36, 49, 64, 81, 100, 125, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849
Offset: 1
The first number line below shows the perfect powers. The second shows each prime. To get a(n), we take the last perfect power in each interval between consecutive primes, omitting the cases where there are none.
-1-----4-------8-9------------16----------------25--27--------32------36----
===2=3===5===7======11==13======17==19======23==========29==31==========37==
A069623 counts perfect powers <= n.
A080769 counts primes between perfect powers.
Cf.
A000015,
A000961,
A052410,
A067871,
A076412,
A131605,
A188951,
A216765,
A345531,
A377057,
A377468,
A378355.
-
radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
Union[Table[NestWhile[#-1&,Prime[n],radQ[#]&],{n,1000}]]
A378374
Perfect powers p such that the interval from the previous perfect power to p contains a unique prime.
Original entry on oeis.org
128, 225, 256, 64009, 1295044
Offset: 1
The consecutive perfect powers 125 and 128 have interval (125, 126, 127, 128) with unique prime 127, so 128 is in the sequence.
For prime powers instead of perfect powers we have
A345531, difference
A377281.
If the same interval contains at least one prime we get
A378250.
For next instead of previous perfect power we have
A378355.
Swapping "prime" with "perfect power" gives
A378364.
A069623 counts perfect powers <= n.
A080769 counts primes between perfect powers.
-
radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
y=Table[NestWhile[#+1&,Prime[n],radQ[#]&],{n,1000}];
Select[Union[y],Count[y,#]==1&]
A378365
Next prime index after each perfect power, duplicates removed.
Original entry on oeis.org
1, 3, 5, 7, 10, 12, 16, 19, 23, 26, 31, 32, 35, 40, 45, 48, 49, 54, 55, 62, 67, 69, 73, 79, 86, 93, 98, 100, 106, 115, 123, 130, 138, 147, 155, 163, 169, 173, 182, 192, 201, 211, 218, 220, 229, 241, 252, 264, 270, 275, 284, 296, 307, 310, 320, 328, 330, 343
Offset: 1
The first number line below shows the perfect powers. The second shows each n at position prime(n). To get a(n), we take the first prime between each pair of consecutive perfect powers, skipping the cases where there are none.
-1-----4-------8-9------------16----------------25--27--------32------36----
===1=2===3===4=======5===6=======7===8=======9==========10==11==========12==
Positions of first appearances in
A378035.
A069623 counts perfect powers <= n.
A080769 counts primes between perfect powers.
A378249 gives the least perfect power > prime(n), restriction of
A377468.
Cf.
A045542,
A052410,
A065514,
A068361,
A076412,
A081676,
A216765,
A345531,
A378250,
A378253,
A378355.
-
perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
Union[1+Table[PrimePi[n],{n,Select[Range[100],perpowQ]}]]
Showing 1-10 of 12 results.
Comments