cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A345531 Smallest prime power greater than the n-th prime.

Original entry on oeis.org

3, 4, 7, 8, 13, 16, 19, 23, 25, 31, 32, 41, 43, 47, 49, 59, 61, 64, 71, 73, 79, 81, 89, 97, 101, 103, 107, 109, 113, 121, 128, 137, 139, 149, 151, 157, 163, 167, 169, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 256, 263, 269, 271, 277
Offset: 1

Views

Author

Dario T. de Castro, Jun 20 2021

Keywords

Comments

Take the family of correlated prime-indexed conjectures appearing in A343249 - A343253, in which an alternative formula for the p-adic order of positive integers is proposed. There, the general p-indexed conjecture says that v_p(n), the p-adic order of n, is given by the formula: v_p(n) = log_p(n / L_p(k0, n)), where L_p(k0, n) is the lowest common denominator of the elements of the set S_p(k0, n) = {(1/n)*binomial(n, k), with 0 < k <= k0 such that k is not divisible by p}. Evidence suggests that the primality of p is a necessary condition in this general conjecture. So, if a composite number q is used instead of a prime p in the proposed formula for the p-adic (now, q-adic) order of n, the first counterexample (failure) is expected to occur for n = q * a(i), where i is the index of the smallest prime that divides q.
The prime-power a(n) is at most the next prime, so this sequence is strictly increasing. See also A366833. - Gus Wiseman, Nov 06 2024

Examples

			a(4) = 8 because the fourth prime number is 7, and the least power of a prime which is greater than 7 is 2^3 = 8.
		

Crossrefs

Starting with n instead of prime(n): A000015, A031218, A377468, A377780, A377782.
Opposite (greatest prime-power less than): A065514, A377289, A377781.
For squarefree instead of prime-power: A112926, opposite A112925.
The difference from prime(n) is A377281.
The prime terms have indices A377286(n) - 1.
First differences are A377703.
A version for perfect-powers is A378249.
A000961 and A246655 list the prime-powers, differences A057820.
A024619 and A361102 list the non-prime-powers, differences A375735.

Programs

  • Maple
    f:= proc(n) local p,x;
      p:= ithprime(n);
      for x from p+1 do
        if nops(numtheory:-factorset(x)) = 1 then return x fi
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Aug 25 2024
  • Mathematica
    a[i_]:= Module[{j, k, N = 0, tab={}}, tab = Sort[Drop[DeleteDuplicates[Flatten[Table[ If[Prime[j]^k > Prime[i], Prime[j]^k], {j, 1, i+1}, {k, 1, Floor[Log[Prime[j], Prime[i+1]]]}]]], 1]]; N = Take[tab, 1][[1]]; N];
    tabseq = Table[a[i],{i, 1, 100}];
    (* second program *)
    Table[NestWhile[#+1&,Prime[n]+1, Not@*PrimePowerQ],{n,100}] (* Gus Wiseman, Nov 06 2024 *)
  • PARI
    A000015(n) = for(k=n,oo,if((1==k)||isprimepower(k),return(k)));
    A345531(n) = A000015(1+prime(n)); \\ Antti Karttunen, Jul 19 2021
    
  • Python
    from itertools import count
    from sympy import prime, factorint
    def A345531(n): return next(filter(lambda m:len(factorint(m))<=1, count(prime(n)+1))) # Chai Wah Wu, Oct 25 2024

Formula

a(n) = A000015(1+A000040(n)). - Antti Karttunen, Jul 19 2021
a(n) = A000015(A008864(n)). - Omar E. Pol, Oct 27 2021

A378035 Greatest perfect power < prime(n).

Original entry on oeis.org

1, 1, 4, 4, 9, 9, 16, 16, 16, 27, 27, 36, 36, 36, 36, 49, 49, 49, 64, 64, 64, 64, 81, 81, 81, 100, 100, 100, 100, 100, 125, 128, 128, 128, 144, 144, 144, 144, 144, 169, 169, 169, 169, 169, 196, 196, 196, 216, 225, 225, 225, 225, 225, 243, 256, 256, 256, 256
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2024

Keywords

Comments

Perfect powers (A001597) are 1 and numbers with a proper integer root, complement A007916.

Examples

			The first number line below shows the perfect powers.
The second shows each positive integer k at position prime(k).
-1-----4-------8-9------------16----------------25--27--------32------36----
===1=2===3===4=======5===6=======7===8=======9==========10==11==========12==
		

Crossrefs

Restriction of A081676 to the primes.
Positions of last appearances are also A377283.
A version for squarefree numbers is A378032.
The opposite is A378249 (run lengths A378251), restriction of A377468 to the primes.
The union is A378253.
Terms appearing exactly once are A378355.
Run lengths are A378356, first differences of A377283, complement A377436.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289.
A007916 lists the nonperfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A080769 counts primes between perfect powers, prime powers A067871.
A131605 lists perfect powers that are not prime powers.
A377432 counts perfect powers between primes, zeros A377436, postpositives A377466.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Table[NestWhile[#-1&,Prime[n],radQ[#]&],{n,100}]
  • PARI
    a(n) = my(k=prime(n)-1); while (!(ispower(k) || (k==1)), k--); k; \\ Michel Marcus, Nov 25 2024
    
  • Python
    from sympy import mobius, integer_nthroot, prime
    def A378035(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(x-1+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        m = (p:=prime(n)-1)-f(p)
        return bisection(lambda x:f(x)+m,m,m) # Chai Wah Wu, Nov 25 2024

A378249 Least perfect power > prime(n).

Original entry on oeis.org

4, 4, 8, 8, 16, 16, 25, 25, 25, 32, 32, 49, 49, 49, 49, 64, 64, 64, 81, 81, 81, 81, 100, 100, 100, 121, 121, 121, 121, 121, 128, 144, 144, 144, 169, 169, 169, 169, 169, 196, 196, 196, 196, 196, 216, 216, 216, 225, 243, 243, 243, 243, 243, 256, 289, 289, 289
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.
Which terms appear only once? Just 128, 225, 256, 64009, 1295044?

Examples

			The first number line below shows the perfect powers. The second shows each prime.
-1-----4-------8-9------------16----------------25--27--------32------36------------------------49--
===2=3===5===7======11==13======17==19======23==========29==31==========37======41==43======47======
		

Crossrefs

A version for prime powers (but starting with prime(k) + 1) is A345531.
Positions of last appearances are A377283, complement A377436.
Restriction of A377468 to the primes, for prime powers A000015.
The opposite is A378035, restriction of A081676.
The union is A378250.
Run lengths are A378251.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289, seconds A376559.
A007916 lists numbers that are not perfect powers, differences A375706, seconds A376562.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A131605 lists perfect powers that are not prime powers.
A377432 counts perfect powers between primes, zeros A377436, postpositives A377466.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Table[NestWhile[#+1&,Prime[n],radQ[#]&],{n,100}]
  • PARI
    f(p) = p++; while(!ispower(p), p++); p;
    lista(nn) = apply(f, primes(nn)); \\ Michel Marcus, Dec 19 2024

A378251 Number of primes between consecutive perfect powers, zeros omitted.

Original entry on oeis.org

2, 2, 2, 3, 2, 4, 3, 4, 3, 5, 1, 3, 5, 5, 3, 1, 5, 1, 7, 5, 2, 4, 6, 7, 7, 5, 2, 6, 9, 8, 7, 8, 9, 8, 8, 6, 4, 9, 10, 9, 10, 7, 2, 9, 12, 11, 12, 6, 5, 9, 12, 11, 3, 10, 8, 2, 13, 15, 10, 11, 15, 7, 9, 12, 13, 11, 12, 17, 2, 11, 16, 16, 13, 17, 15, 14, 16, 15
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2024

Keywords

Comments

First differences of A377283 and A378365. Run-lengths of A378035 and A378249.
Perfect powers (A001597) are 1 and numbers with a proper integer root, complement A007916.

Examples

			The first number line below shows the perfect powers. The second shows each prime. To get a(n) we count the primes between consecutive perfect powers, skipping the cases where there are none.
-1-----4-------8-9------------16----------------25--27--------32------36----
===2=3===5===7======11==13======17==19======23==========29==31==========37==
		

Crossrefs

Same as A080769 with 0's removed (which were at positions A274605).
First differences of A377283 and A378365 (union of A378356).
Run-lengths of A378035 (union A378253) and A378249 (union A378250).
The version for nonprime prime powers is A378373, with zeros A067871.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289, run-lengths of A377468.
A007916 lists the non-perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A131605 lists perfect powers that are not prime powers.
A377432 counts perfect powers between primes, see A377434, A377436, A377466.

Programs

  • Maple
    N:= 10^6: # to use perfect powers up to N
    PP:= {1,seq(seq(i^j,j=2..ilog[i](N)),i=2..isqrt(N))}:
    PP:= sort(convert(PP,list)):
    M:= map(numtheory:-pi, PP):
    subs(0=NULL, M[2..-1]-M[1..-2]): # Robert Israel, Jan 23 2025
  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Length/@Split[Table[NestWhile[#+1&,Prime[n],radQ[#]&],{n,100}]]

A378250 Perfect-powers x > 1 such that it is not possible to choose a prime y and a perfect-power z satisfying x > y > z.

Original entry on oeis.org

4, 8, 16, 25, 32, 49, 64, 81, 100, 121, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849, 1936
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.

Examples

			The first number line below shows the perfect-powers. The second shows the primes. The third is a(n).
-1-----4-------8-9------------16----------------25--27--------32------36----
===2=3===5===7======11==13======17==19======23==========29==31==========37==
       4       8              16                25            32
The terms together with their prime indices begin:
     4: {1,1}
     8: {1,1,1}
    16: {1,1,1,1}
    25: {3,3}
    32: {1,1,1,1,1}
    49: {4,4}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
   100: {1,1,3,3}
   121: {5,5}
   128: {1,1,1,1,1,1,1}
   144: {1,1,1,1,2,2}
   169: {6,6}
   196: {1,1,4,4}
   216: {1,1,1,2,2,2}
   225: {2,2,3,3}
   243: {2,2,2,2,2}
   256: {1,1,1,1,1,1,1,1}
		

Crossrefs

A version for prime-powers (but starting with prime(k) + 1) is A345531.
The opposite is union of A378035, restriction of A081676.
Union of A378249, run-lengths are A378251.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A069623 counts perfect-powers <= n.
A076411 counts perfect-powers < n.
A131605 lists perfect-powers that are not prime-powers.
A377432 counts perfect-powers between primes, zeros A377436, positive A377283, postpositive A377466.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Union[Table[NestWhile[#+1&,Prime[n],radQ[#]&],{n,100}]]

A378356 Prime index of the next prime after the n-th perfect power.

Original entry on oeis.org

1, 3, 5, 5, 7, 10, 10, 12, 12, 16, 19, 23, 26, 31, 31, 32, 35, 40, 45, 48, 49, 54, 55, 62, 67, 69, 73, 79, 86, 93, 98, 100, 106, 115, 123, 130, 138, 147, 155, 163, 169, 173, 182, 192, 201, 211, 218, 220, 229, 241, 252, 264, 270, 275, 284, 296, 307, 310, 320
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2024

Keywords

Crossrefs

First differences are A080769.
Union is A378365.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A377432 counts perfect powers between primes, see A377434, A377436, A377466.
A378249 gives the least perfect power > prime(n), restriction of A377468.

Programs

  • Mathematica
    Table[PrimePi[NextPrime[n]],{n,Select[Range[1000],perpowQ]}]

Formula

a(n) = A000720(A001597(n)) + 1.

A378355 Numbers appearing exactly once in A378035 (greatest perfect power < prime(n)).

Original entry on oeis.org

125, 216, 243, 64000, 1295029, 2535525316, 542939080312
Offset: 1

Views

Author

Gus Wiseman, Nov 26 2024

Keywords

Comments

These are perfect-powers p such that the interval from p to the next perfect power contains a unique prime.
Is this sequence infinite? See A178700.

Examples

			We have 125 because 127 is the only prime between 125 and 128.
		

Crossrefs

The next prime is A178700.
Singletons in A378035 (union A378253), restriction of A081676.
The next perfect power is A378374.
Swapping primes and perfect powers gives A379154, unique case of A377283.
A000040 lists the primes, differences A001223.
A001597 lists the perfect powers, differences A053289.
A007916 lists the not perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A377432 counts perfect powers between primes, see A377434, A377436, A377466.
A378249 gives least perfect power > prime(n) (run-lengths A378251), restrict of A377468.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    y=Table[NestWhile[#-1&,Prime[n],radQ[#]&],{n,1000}];
    Select[Union[y],Count[y,#]==1&]

Formula

A151800(a(n)) = A178700(n).

A379155 Numbers k such that there is a unique prime between the k-th and (k+1)-th prime powers (A246655).

Original entry on oeis.org

2, 3, 5, 7, 9, 10, 13, 15, 17, 18, 22, 23, 26, 27, 31, 32, 40, 42, 43, 44, 52, 53, 67, 68, 69, 70, 77, 78, 85, 86, 90, 91, 116, 117, 119, 120, 135, 136, 151, 152, 169, 170, 186, 187, 197, 198, 243, 244, 246, 247, 291, 292, 312, 313, 339, 340, 358, 360, 362
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2024

Keywords

Comments

Numbers k such that exactly one of A246655(k) and A246655(k+1) is prime. - Robert Israel, Jan 22 2025
The prime powers themselves are: 3, 4, 7, 9, 13, 16, 23, 27, 31, 32, 47, 49, 61, 64, ...

Examples

			The 4th and 5th prime powers are 5 and 7, with interval (5,6,7) containing two primes, so 4 is not in the sequence.
The 13th and 14th prime powers are 23 and 25, with interval (23,24,25) containing only one prime, so 13 is in the sequence.
The 18th and 19th prime powers are 32 and 37, with interval (32,33,34,35,36,37) containing just one prime 37, so 18 is in the sequence.
		

Crossrefs

These are the positions of 1 in A366835, for perfect powers A080769.
For perfect powers instead of prime powers we have A378368.
For no primes we have A379156, for perfect powers A274605.
The prime powers themselves are A379157, for previous A175106.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime power <= n.
A065514 gives the greatest prime power < prime(n), difference A377289.
A246655 lists the prime powers.
A366833 counts prime powers between primes, see A053607, A304521.

Programs

  • Maple
    N:= 1000: # for terms k where A246655(k+1) <+ N
    P:= select(isprime,[2,seq(i,i=3..N,2)]):
    S:= convert(P,set):
    for p in P while p^2 <= N do
      S:= S union {seq(p^j,j=2..ilog[p](N))}
    od:
    PP:= sort(convert(S,list)):
    state:= 1: Res:= NULL:
    ip:= 2:
    for i from 2 to nops(PP) do
      if PP[i] = P[ip] then
        if state = 0 then Res:= Res,i-1 fi;
        state:= 1;
        ip:= ip+1;
      else
        if state = 1 then Res:= Res,i-1 fi;
        state:= 0;
      fi
    od:
    Res; # Robert Israel, Jan 22 2025
  • Mathematica
    v=Select[Range[100],PrimePowerQ];
    Select[Range[Length[v]-1],Length[Select[Range[v[[#]],v[[#+1]]],PrimeQ]]==1&]

Formula

A246655(a(n)) = A379157(n).

A378253 Perfect powers p such that there are no other perfect powers between p and the least prime > p.

Original entry on oeis.org

1, 4, 9, 16, 27, 36, 49, 64, 81, 100, 125, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849
Offset: 1

Views

Author

Gus Wiseman, Nov 26 2024

Keywords

Comments

Perfect powers (A001597) are 1 and numbers with a proper integer root, complement A007916.
Each term is the greatest perfect power < prime(k) for some k.

Examples

			The first number line below shows the perfect powers. The second shows each prime. To get a(n), we take the last perfect power in each interval between consecutive primes, omitting the cases where there are none.
-1-----4-------8-9------------16----------------25--27--------32------36----
===2=3===5===7======11==13======17==19======23==========29==31==========37==
		

Crossrefs

Union of A378035, restriction of A081676 to the primes.
The opposite is A378250, union of A378249 (run-lengths A378251).
A000040 lists the primes, differences A001223.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non-perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A080769 counts primes between perfect powers.
A377283 ranks perfect powers between primes, differences A378356.
A377432 counts perfect powers between primes, see A377434, A377436, A377466.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Union[Table[NestWhile[#-1&,Prime[n],radQ[#]&],{n,1000}]]

A378368 Positions (in A001597) of consecutive perfect powers with a unique prime between them.

Original entry on oeis.org

15, 20, 22, 295, 1257
Offset: 1

Views

Author

Gus Wiseman, Dec 17 2024

Keywords

Comments

Perfect powers (A001597) are 1 and numbers with a proper integer root.
The perfect powers themselves are given by A001597(a(n)) = A378355(n).

Examples

			The 15th and 16th perfect powers are 125 and 128, and 127 is the only prime between them, so 15 is in the sequence.
		

Crossrefs

These are the positions of 1 in A080769.
The next prime after A001597(a(n)) is A178700(n).
For no (instead of one) perfect powers we have A274605.
Swapping 'prime' and 'perfect power' gives A377434, unique case of A377283.
The next perfect power after A001597(a(n)) is A378374(n).
For prime powers instead of perfect powers we have A379155.
A000040 lists the primes, differences A001223.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A081676 gives the greatest perfect power <= n.
A377432 counts perfect powers between primes, see A377436, A377466.
A377468 gives the least perfect power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    v=Select[Range[1000],perpowQ];
    Select[Range[Length[v]-1],Length[Select[Range[v[[#]],v[[#+1]]],PrimeQ]]==1&]

Formula

We have A001597(a(n)) = A378355(n) < A178700(n) < A378374(n).
Showing 1-10 of 15 results. Next