cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189144 a(n) = lcm(n,n+1,n+2,n+3,n+4,n+5,n+6)/420.

Original entry on oeis.org

0, 1, 2, 6, 6, 66, 66, 858, 858, 429, 572, 9724, 2652, 50388, 3876, 3876, 42636, 245157, 28842, 48070, 32890, 296010, 296010, 780390, 33930, 525915, 841464, 712008, 1344904, 1344904, 139128
Offset: 0

Views

Author

Gary Detlefs, Apr 17 2011

Keywords

Comments

(n-1)!*12600*a(n)/(n+6)! produces a sequence of fractions (from offset 1).
The numerators have a period of 5, repeating [5,5,5,1,1]=4*(n^4 mod 5 +(n-1)^4 mod 5 -1)+1
The denominators have a period of 12, repeating [2,8,12,8,2,24,4,8,6,8,4,24]. This sequence factors to 2^p(n)*3^q(n) where p(n) is a sequence of period 4, repeating [1,3,2,3] and q(n) is a sequence of period 3, repeating [0,0,1]. p(n) = A131729(n+1)+2. q(n) = A022003(n-1).

Programs

  • Haskell
    a189144 n = (foldl1 lcm [n..n+6]) `div` 420
    -- Reinhard Zumkeller, Apr 28 2011
  • Maple
    seq(lcm(n,n+1,n+2,n+3,n+4,n+5,n+6)/420, n=0..30);
    f:= n-> 4*(n^4 mod 5 +(n-1)^4 mod 5 -1)+1:p:= n->)=(9+2*cos((n-3)*Pi/2)+3*(-1)^n)/4:q:=n->)=((n-1)^5 -(n-1)^2) mod 3: seq((n+6)!*f(n)/(12600*(n-1)!*2^p(n)*3^q(n)),n=1..30);
  • Mathematica
    Table[(LCM@@Range[n,n+6])/420,{n,0,30}] (* Harvey P. Dale, Jun 13 2015 *)

Formula

a(n)= (n+6)!*f(n)/(12600*(n-1)!*2^p(n)*3^q(n)),n>0 where
f(n)= 4*(n^4 mod 5 +(n-1)^4 mod 5 -1)+1
p(n)=(9+2*cos((n-3)*Pi/2)+3*(-1)^n)/4
q(n)=((n-1)^5 -(n-1)^2) mod 3