A189144 a(n) = lcm(n,n+1,n+2,n+3,n+4,n+5,n+6)/420.
0, 1, 2, 6, 6, 66, 66, 858, 858, 429, 572, 9724, 2652, 50388, 3876, 3876, 42636, 245157, 28842, 48070, 32890, 296010, 296010, 780390, 33930, 525915, 841464, 712008, 1344904, 1344904, 139128
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for sequences related to lcm's
Programs
-
Haskell
a189144 n = (foldl1 lcm [n..n+6]) `div` 420 -- Reinhard Zumkeller, Apr 28 2011
-
Maple
seq(lcm(n,n+1,n+2,n+3,n+4,n+5,n+6)/420, n=0..30); f:= n-> 4*(n^4 mod 5 +(n-1)^4 mod 5 -1)+1:p:= n->)=(9+2*cos((n-3)*Pi/2)+3*(-1)^n)/4:q:=n->)=((n-1)^5 -(n-1)^2) mod 3: seq((n+6)!*f(n)/(12600*(n-1)!*2^p(n)*3^q(n)),n=1..30);
-
Mathematica
Table[(LCM@@Range[n,n+6])/420,{n,0,30}] (* Harvey P. Dale, Jun 13 2015 *)
Formula
a(n)= (n+6)!*f(n)/(12600*(n-1)!*2^p(n)*3^q(n)),n>0 where
f(n)= 4*(n^4 mod 5 +(n-1)^4 mod 5 -1)+1
p(n)=(9+2*cos((n-3)*Pi/2)+3*(-1)^n)/4
q(n)=((n-1)^5 -(n-1)^2) mod 3
Comments