cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189233 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals upwards, where the e.g.f. of column k is exp(k*(e^x-1)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 6, 3, 1, 0, 15, 22, 12, 4, 1, 0, 52, 94, 57, 20, 5, 1, 0, 203, 454, 309, 116, 30, 6, 1, 0, 877, 2430, 1866, 756, 205, 42, 7, 1, 0, 4140, 14214, 12351, 5428, 1555, 330, 56, 8, 1, 0, 21147, 89918, 88563, 42356, 12880, 2850, 497, 72, 9, 1
Offset: 0

Views

Author

Peter Luschny, Apr 18 2011

Keywords

Comments

A(n,k) is the n-th moment of a Poisson distribution with mean = k. - Geoffrey Critzer, Dec 23 2018

Examples

			Square array begins:
       A000007 A000110 A001861 A027710 A078944 A144180 A144223 A144263
A000012   1,    1,    1,    1,    1,     1,     1,     1, ...
A001477   0,    1,    2,    3,    4,     5,     6,     7, ...
A002378   0,    2,    6,   12,   20,    30,    42,    56, ...
A033445   0,    5,   22,   57,  116,   205,   330,   497, ...
          0,   15,   94,  309,  756,  1555,  2850,  4809, ...
          0,   52,  454, 1866, 5428, 12880, 26682, 50134, ...
		

Crossrefs

Programs

  • Maple
    # Cf. also the Maple prog. of Alois P. Heinz in A144223 and A144180.
    expnums := proc(k,n) option remember; local j;
    `if`(n = 0, 1, (1+add(binomial(n-1,j-1)*expnums(k,n-j), j = 1..n-1))*k) end:
    A189233_array := (k, n) -> expnums(k,n):
    seq(print(seq(A189233_array(k,n), k = 0..7)), n = 0..5);
    A189233_egf := k -> exp(k*(exp(x)-1));
    T := (n,k) -> n!*coeff(series(A189233_egf(k), x, n+1), x, n):
    seq(lprint(seq(T(n,k), k = 0..7)), n = 0..5):
    # alternative Maple program:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          (1+add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
        end:
    seq(seq(A(d-k, k), k=0..d), d=0..12);  # Alois P. Heinz, Sep 25 2017
  • Mathematica
    max = 9; Clear[col]; col[k_] := col[k] = CoefficientList[ Series[ Exp[k*(Exp[x]-1)], {x, 0, max}], x]*Range[0, max]!; a[0, ] = 1; a[n?Positive, 0] = 0; a[n_, k_] := col[k][[n+1]]; Table[ a[n-k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 26 2013 *)
    Table[Table[BellB[n, k], {k, 0, 5}], {n, 0, 5}] // Grid  (* Geoffrey Critzer, Dec 23 2018 *)
  • Maxima
    A(n,k):=if k=0 and n=0 then 1 else if k=0 then 0 else  sum(stirling2(n,i)*k^i,i,0,n); /* Vladimir Kruchinin, Apr 12 2019 */

Formula

E.g.f. of column k: exp(k*(e^x-1)).
A(n,1) = A000110(n), A(n, -1) = A000587(n).
A(n,k) = BellPolynomial(n, k). - Geoffrey Critzer, Dec 23 2018
A(n,k) = Sum_{i=0..n} Stirling2(n,i)*k^i. - Vladimir Kruchinin, Apr 12 2019