cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A333706 Number T(n,k) of permutations p of [n] such that |p(i+k) - p(i)| <> k for i in [n-k]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 4, 6, 0, 2, 16, 20, 24, 0, 14, 44, 80, 108, 120, 0, 90, 200, 384, 544, 672, 720, 0, 646, 1288, 2240, 3264, 4128, 4800, 5040, 0, 5242, 9512, 15424, 23040, 28992, 34752, 38880, 40320, 0, 47622, 78652, 123456, 176832, 231936, 280512, 323520, 352800, 362880
Offset: 0

Views

Author

Alois P. Heinz, Apr 02 2020

Keywords

Comments

T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = n! for k>=n.

Examples

			Triangle T(n,k) begins:
  1;
  0,    1;
  0,    0,    2;
  0,    0,    4,     6;
  0,    2,   16,    20,    24;
  0,   14,   44,    80,   108,   120;
  0,   90,  200,   384,   544,   672,   720;
  0,  646, 1288,  2240,  3264,  4128,  4800,  5040;
  0, 5242, 9512, 15424, 23040, 28992, 34752, 38880, 40320;
  ...
		

Crossrefs

Columns k=0-10 (for n>=k) give: A000007, A002464, A110128, A117574, A189255, A189256, A189271, A360384, A360386, A360462, A360463.
Main diagonal gives A000142.
T(2n,n) gives A189849.
T(n+1,n) gives 4*A138772(n).
T(n+2,n) gives 16*A333804(n).
Cf. A000170 (condition is satisfied for all k), A248686 (p(i) at distance k are sorted).

A189285 Number of permutations p of 1,2,...,n satisfying p(i+6)-p(i)<>6 for all 1<=i<=n-6.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 4920, 37488, 319644, 3033264, 31784280, 364902480, 4538652840, 61102571376, 885045657564, 13722397569072, 226742901078120, 3977354871110160, 73816786920489720, 1444940702597713008, 29750236302549282948
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2011

Keywords

Comments

a(n) is also number of ways to place n nonattacking pieces rook + semi-leaper[6,6] on an n X n chessboard.

Crossrefs

Formula

Asymptotics (V. Kotesovec, Mar 2011): a(n)/n! ~ (1 + 11/n + 30/n^2)/e.
Generally (for this sequence is d=6): 1/e*(1+(2d-1)/n+d*(d-1)/n^2).

Extensions

Terms a(23)-a(24) from Vaclav Kotesovec, Apr 21 2012

A189842 Number of ways to place n nonattacking composite pieces rook + rider[6,6] on an n X n chessboard.

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 4800, 34752, 280512, 2528256, 25282560, 278323200, 3242649600, 40330371072, 536528954880, 7633092132864
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 29 2011

Keywords

Comments

a(n) is also number of permutations p of 1,2,...,n satisfying |p(j+6k)-p(j)|<>6k for all j>=1, k>=1, j+6k<=n

Crossrefs

Showing 1-3 of 3 results.