A189409 a(n) = prime(n)#^2 + 1, where prime(n)# is the n-th primorial (A002110).
2, 5, 37, 901, 44101, 5336101, 901800901, 260620460101, 94083986096101, 49770428644836901, 41856930490307832901, 40224510201185827416901, 55067354465423397733736101, 92568222856376731590410384101
Offset: 0
Examples
(p_16#)^2+1 = 1062053250251407755176413469419400772901 is prime.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..190
- E.W. Weisstein, Integer Sequence Primes
- Eric W. Weisstein's World of Mathematics, Euclid's Theorem
Programs
-
Mathematica
Table[Product[Prime[n]^2, {n, 1, k}] + 1, {k, 0, 16}] Join[{2},FoldList[Times,Prime[Range[20]]]^2+1] (* Harvey P. Dale, Jan 15 2019 *)
-
PARI
list(maxx)={n=prime(1); cnt=0;print("0 2"); while(n<=maxx,q=(prodeuler(p=1,n,p))^2+1;cnt++; print(cnt," ",q); n=nextprime(n+1)); } \\ Bill McEachen, Feb 03 2014
-
Python
from functools import reduce import numpy as np def factors(n): return reduce(list._add_, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0)) mul = 1 for i in range(1, 20): if len(factors(i))<3: mul *= i*i print(mul+1, factors(mul+1)) # Abhiram R Devesh, Jan 23 2013
Formula
a(n)=(E(n)-1)^2+1, where E(n) is the n-th Euclid number.
Extensions
Typo in Mma fixed by Vincenzo Librandi, Feb 04 2014
Comments