cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189642 Numerator of H(n+4) - H(n), where H(n) = Sum_{k=1..n} 1/k.

Original entry on oeis.org

25, 77, 19, 319, 533, 275, 1207, 1691, 763, 3013, 3875, 543, 6061, 7409, 2981, 10675, 12617, 4927, 17179, 19823, 2525, 25897, 29351, 11033, 37153, 41525, 15409, 51271, 56669, 6937, 68575, 75107, 27347, 89389, 97163, 35125, 114037, 123161, 14751, 142843, 153425
Offset: 0

Views

Author

Gary Detlefs, May 02 2011

Keywords

Comments

a(n) = Numerator of (4*n^3+30*n^2+70*n+50)/((n+1)*(n+2)*(n+3)*(n+4)).
(4*n^3+30*n^2+70*n+50)/a(n) has period length 9, repeating 1, 1, 9, 1, 1, 3, 1, 1, 3.
It is of interest to note that the roots of 4*n^3+30*n^2+70*n+50 are -phi-2, phi-3, and -5/2, where phi = (1+sqrt(5))/2.
H(n+4)-H(n) = (2*n^3+15*n^2+35*n+25)/(12*binomial(n+4,4)).

Crossrefs

Programs

  • Magma
    Harmonic:=func< n | n eq 0 select 0 else &+[ 1/k: k in [1..n] ] >; A189642:=func< n | Numerator( Harmonic(n+4)-Harmonic(n) ) >; [ Numerator( A189642(n) ): n in [0..40] ]; // Klaus Brockhaus, May 21 2011
  • Maple
    h:=n-> sum(1/k,k=1..n):seq(numer(h(n+4)-h(n)), n=0..30);
    # alternative Maple program:
    P:=(k,n)-> floor(1/2*cos(2*n*Pi/k)+3/5):
    seq((4*n^3+30*n^2+70*n+50)/(2*(1+2*P(3,n+1))*(1+2*P(9,n+7))),n=0..30);
  • Mathematica
    Numerator[Table[HarmonicNumber[n+4] - HarmonicNumber[n], {n, 0, 100}]] (* T. D. Noe, May 24 2011 *)

Formula

a(n) = (4*n^3+30*n^2+70*n+50)/(2*(1+2*P(3, n+1))*(1+2*P(9, n+7))), where P(k, n) = floor(1/2*cos(2*n*Pi/k)+3/5).