cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189883 Numbers k such that the square part of k is one greater than the squarefree part of k.

Original entry on oeis.org

12, 240, 1260, 20592, 38220, 65280, 104652, 159600, 233772, 809100, 1047552, 1335180, 1678320, 2083692, 2558400, 3109932, 7308912, 8500140, 9831360, 11313132, 12956400, 18970380, 21376752, 24005100, 26868672, 37008972, 49780080
Offset: 1

Views

Author

Antonio Roldán, Apr 29 2011

Keywords

Comments

The complementary sequence, squarefree part of k is one greater than the square part of k, is A069187.

Examples

			1260 = 2^2*3^2*5*7, square part: 2^2*3^2 = 36, squarefree part: 5*7 = 35, and 36 = 35+1.
		

Programs

  • Maple
    b:= proc() 1 end:
    a:= proc(n) option remember; local i, k;
          if n>1 then a(n-1) fi;
          for k from b(n-1)+1 while 1<>mul(i[2], i=ifactors(k^2-1)[2])
          do od; b(n):=k; k^4-k^2
        end:
    seq(a(n), n=1..50); # Alois P. Heinz, Apr 29 2011
  • Mathematica
    okQ[n_] := Module[{p, e, sfp}, {p, e} = Transpose[FactorInteger[n]]; e = Mod[e, 2]; sfp = Times @@ (p^e); n/sfp - sfp == 1]; Select[Range[10^5], okQ] (* T. D. Noe, Apr 29 2011 *)
  • PARI
    for(n=1,1e3,if(issquarefree(n^2-1),print1(n^4-n^2", "))) \\ Charles R Greathouse IV, Apr 29 2011

Formula

n such that A008833(n) - A007913(n) = 1.
a(n) = x^2 (x^2-1), where x = A067874(n). - T. D. Noe, Apr 29 2011