cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189898 Triangular array read by rows. T(n,k) is the number of digraphs with n labeled nodes having exactly k undirected (or weak) components, n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 3, 1, 54, 9, 1, 3834, 243, 18, 1, 1027080, 20790, 675, 30, 1, 1067308488, 6364170, 67635, 1485, 45, 1, 4390480193904, 7543111716, 23031540, 171045, 2835, 63, 1, 72022346388181584, 35217115838604, 30469951764, 63580545, 370440, 4914, 84, 1
Offset: 1

Views

Author

Geoffrey Critzer, May 01 2011

Keywords

Comments

The Bell transform of A003027(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016

Examples

			1
3       1
54      9     1
3834    243   18   1
1027080 20790 675  30  1
		

Crossrefs

Column 1 = A003027, row sums = A053763, lower diagonal = A045943.

Programs

  • Maple
    T:= (n, k)-> coeff(series(log(add(2^(i^2-i) *x^i/i!, i=0..n))^k /k!,
                       x, n+1), x, n) *n!:
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, May 01 2011
  • Mathematica
    a= Sum[4^Binomial[n,2]x^n/n!,{n,0,10}];
    Transpose[Map[Drop[#, 1] &,Table[Range[0, 10]! CoefficientList[Series[Log[a]^n/n!, {x, 0, 10}], x], {n, 1, 10}]]] // Grid
  • Sage
    # uses[bell_matrix from A264428, A003027]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: A003027(n+1), 10) # Peter Luschny, Jan 18 2016

Formula

E.g.f. for column k: log(A(x))^k/k! where A(x) is the e.g.f. for A053763.

Extensions

Name clarified by Andrew Howroyd, Jan 11 2022