A189912 Extended Motzkin numbers, Sum_{k>=0} C(n,k)*C(k), where C(k) is the extended Catalan number A057977(k).
1, 2, 4, 10, 25, 66, 177, 484, 1339, 3742, 10538, 29866, 85087, 243478, 699324, 2015082, 5822619, 16865718, 48958404, 142390542, 414837699, 1210439958, 3536809521, 10347314544, 30306977757, 88861597426, 260798283502, 766092871654, 2252240916665
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Per Alexandersson, Proof of Werner Schulte's formula.
- A. Asinowski and G. Rote, Point sets with many non-crossing matchings, arXiv preprint arXiv:1502.04925 [cs.CG], 2015.
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, The Scambler_statistic_on_Dyck_words.
Programs
-
Maple
A189912 := proc(n) local k; add(n!/(((n-k)!*iquo(k,2)!^2)*(iquo(k,2)+1)),k=0..n) end: M := proc(n) option remember; `if`(n<2, 1, (3*(n-1)*M(n-2)+(2*n+1)*M(n-1))/(n+2)) end: A189912 := n -> n*M(n-1)+M(n); seq(A189912(i), i=0..28); # Peter Luschny, Sep 12 2011
-
Mathematica
A057977[n_] := n!/(Quotient[n, 2]!^2*(Quotient[n, 2] + 1)); a[n_] := Sum[Binomial[n, k]*A057977[k], {k, 0, n}]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, May 21 2013, after Peter Luschny *) Table[Sum[n!/(((n-k)!*Floor[k/2]!^2)*(Floor[k/2]+1)), {k,0,n}], {n,0,30}] (* G. C. Greubel, Jan 24 2017 *) A057977[n_] := Sum[n! (n + 1 - 2 k)/((k + 1)! (k!) (n - 2 k)!), {k, 0, n}] (* Per W. Alexandersson, May 28 2020 *)
-
PARI
a(n) = sum(k=0, n, binomial(n,k)*k!/( (k\2)!^2 * (k\2+1)) ); vector(30, n, a(n-1)) \\ G. C. Greubel, Jan 24 2017; Mar 28 2020
-
Sage
@CachedFunction def M(n): return (3*(n-1)*M(n-2)+(2*n+1)*M(n-1))/(n+2) if n>1 else 1 A189912 = lambda n: n*M(n-1) + M(n) [A189912(i) for i in (0..28)] # Peter Luschny, Oct 22 2012
Formula
a(n) = Sum_{k=0..n} n!/(((n-k)!*floor(k/2)!^2)*(floor(k/2)+1)).
Recurrence: (n+2)*(n^2 + 2*n - 5)*a(n) = (2*n^3 + 7*n^2 - 14*n - 7)*a(n-1) + 3*(n-1)*(n^2 + 4*n - 2)*a(n-2). - Vaclav Kotesovec, Mar 20 2014
a(n) ~ 3^(n+1/2) / (2*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: a(n) = Sum_{k=0..floor(n/2)} (n+1-2*k)*A055151(n,k). - Werner Schulte, Oct 23 2016
a(n) = Sum_{k=0..floor(n/2)} (n+1-2*k)*n!/(k!*(k+1)!*(n-2*k)!). - Per W. Alexandersson, May 28 2020
Comments