cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A189912 Extended Motzkin numbers, Sum_{k>=0} C(n,k)*C(k), where C(k) is the extended Catalan number A057977(k).

Original entry on oeis.org

1, 2, 4, 10, 25, 66, 177, 484, 1339, 3742, 10538, 29866, 85087, 243478, 699324, 2015082, 5822619, 16865718, 48958404, 142390542, 414837699, 1210439958, 3536809521, 10347314544, 30306977757, 88861597426, 260798283502, 766092871654, 2252240916665
Offset: 0

Views

Author

Peter Luschny, May 01 2011

Keywords

Comments

a(n) = Sum_{k=0..n} binomial(n,k)*A057977(k). For comparison:
A001006(n) = Sum_{k=0..n} binomial(n,k)*A057977(k)*[k is even],
A005717(n) = Sum_{k=0..n} binomial(n,k)*A057977(k)*[k is odd].
Thus one might simply say: The extended Motzkin numbers are the binomial sum of the extended Catalan numbers. Moreover: The Catalan numbers aerated with 0's at odd positions (A126120) are the inverse binomial transform of the Motzkin numbers (A001006). The complementary Catalan numbers (A001700) aerated with 0's at even positions (A138364) are the inverse binomial transform of the complementary Motzkin numbers (A005717). The extended Catalan numbers (A057977 = A126120 + A138364) are the inverse binomial transform of the extended Motzkin numbers (A189912).
David Scambler observed that [1, a(n-1)] for n >= 1 count the Dyck paths of semilength n which satisfy the condition "number of peaks <= number of returns + number of hills". - Peter Luschny, Oct 22 2012

Crossrefs

Programs

  • Maple
    A189912 := proc(n) local k;
    add(n!/(((n-k)!*iquo(k,2)!^2)*(iquo(k,2)+1)),k=0..n) end:
    M := proc(n) option remember; `if`(n<2, 1, (3*(n-1)*M(n-2)+(2*n+1)*M(n-1))/(n+2)) end:
    A189912 := n -> n*M(n-1)+M(n);
    seq(A189912(i), i=0..28); # Peter Luschny, Sep 12 2011
  • Mathematica
    A057977[n_] := n!/(Quotient[n, 2]!^2*(Quotient[n, 2] + 1)); a[n_] := Sum[Binomial[n, k]*A057977[k], {k, 0, n}]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, May 21 2013, after Peter Luschny *)
    Table[Sum[n!/(((n-k)!*Floor[k/2]!^2)*(Floor[k/2]+1)), {k,0,n}], {n,0,30}] (* G. C. Greubel, Jan 24 2017 *)
    A057977[n_] :=  Sum[n! (n + 1 - 2 k)/((k + 1)! (k!) (n - 2 k)!), {k, 0, n}] (* Per W. Alexandersson, May 28 2020 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)*k!/( (k\2)!^2 * (k\2+1)) );
    vector(30, n, a(n-1)) \\ G. C. Greubel, Jan 24 2017; Mar 28 2020
  • Sage
    @CachedFunction
    def M(n): return (3*(n-1)*M(n-2)+(2*n+1)*M(n-1))/(n+2) if n>1 else 1
    A189912 = lambda n: n*M(n-1) + M(n)
    [A189912(i) for i in (0..28)] # Peter Luschny, Oct 22 2012
    

Formula

a(n) = Sum_{k=0..n} n!/(((n-k)!*floor(k/2)!^2)*(floor(k/2)+1)).
Recurrence: (n+2)*(n^2 + 2*n - 5)*a(n) = (2*n^3 + 7*n^2 - 14*n - 7)*a(n-1) + 3*(n-1)*(n^2 + 4*n - 2)*a(n-2). - Vaclav Kotesovec, Mar 20 2014
a(n) ~ 3^(n+1/2) / (2*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: a(n) = Sum_{k=0..floor(n/2)} (n+1-2*k)*A055151(n,k). - Werner Schulte, Oct 23 2016
a(n) = Sum_{k=0..floor(n/2)} (n+1-2*k)*n!/(k!*(k+1)!*(n-2*k)!). - Per W. Alexandersson, May 28 2020