A194588
a(n) = A189912(n-1)-a(n-1) for n>0, a(0) = 1; extended Riordan numbers.
Original entry on oeis.org
1, 0, 2, 2, 8, 17, 49, 128, 356, 983, 2759, 7779, 22087, 63000, 180478, 518846, 1496236, 4326383, 12539335, 36419069, 105971473, 308866226, 901573732, 2635235789, 7712078755, 22594899002, 66266698424, 194531585078, 571561286576, 1680679630089, 4945738222801
Offset: 0
-
A189912 := n -> add(n!/((n-k)!*iquo(k,2)!^2 *(iquo(k,2)+1)),k=0..n):
A194588 := n -> `if`(n=0,1,A189912(n-1)-A194588(n-1)):
-
a[0] = 1; a[n_] := a[n] = Sum[(n-1)!/((n-k-1)!*Quotient[k, 2]!^2*(1 + Quotient[k, 2])), {k, 0, n-1}] - a[n-1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 30 2013 *)
A163649
Triangle interpolating between (-1)^n (A033999) and A056040(n), read by rows.
Original entry on oeis.org
1, -1, 1, 1, -2, 2, -1, 3, -6, 6, 1, -4, 12, -24, 6, -1, 5, -20, 60, -30, 30, 1, -6, 30, -120, 90, -180, 20, -1, 7, -42, 210, -210, 630, -140, 140, 1, -8, 56, -336, 420, -1680, 560, -1120, 70
Offset: 0
1
-1, 1
1, -2, 2
-1, 3, -6, 6
1, -4, 12, -24, 6
-1, 5, -20, 60, -30, 30
1, -6, 30, -120, 90, -180, 20
-1, 7, -42, 210, -210, 630, -140, 140
1, -8, 56, -336, 420, -1680, 560, -1120, 70
-
a := proc(n,k) (-1)^(n-k)*floor(k/2)!^(-2)*n!/(n-k)! end:
seq(print(seq(a(n,k),k=0..n)),n=0..8);
-
t[n_, k_] := (-1)^(n - k)*Floor[k/2]!^(-2)*n!/(n - k)!; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)
-
for(n=0,10, for(k=0,n, print1((-1)^(n -k)*( (floor(k/2))! )^(-2)*(n!/(n - k)!), ", "))) \\ G. C. Greubel, Aug 01 2017
A217539
Number of Dyck paths of semilength n which satisfy the condition: number of returns + number of hills < number of peaks.
Original entry on oeis.org
0, 0, 0, 1, 4, 17, 66, 252, 946, 3523, 13054, 48248, 178146, 657813, 2430962, 8995521, 33342588, 123822171, 460772982, 1718304786, 6421729878, 24051429321, 90272123682, 339522804129, 1279556832780, 4831639423695, 18278491474726, 69272752632502, 262981858878706
Offset: 0
a(4) = 4 count the Dyck words
[11010100] (()()()) [11011000] (()(()))
[11100100] ((())()) [11101000] ((()())) .
-
A217539 := proc(n) local k; if n = 0 then 0 else (2*n)!/(n!^2*(n+1)) - add((n-1)!/(((n-1-k)!*iquo(k,2)!^2)*(iquo(k,2)+1)), k=0..n-1) fi end: seq(A217539(i), i=0..28);
-
MotzkinNumber[n_] := Sum[ Binomial[n+1, k]*Binomial[n+1-k, k-1], {k, 0, Ceiling[(n+1)/2]}]/(n+1); a[0] = a[1] = 0; a[n_] := CatalanNumber[n] - (n-1)*MotzkinNumber[n-2] - MotzkinNumber[n-1]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jun 27 2013, from 3rd formula *)
-
def A217539(n):
@CachedFunction
def M(n): return (3*(n-1)*M(n-2)+(2*n+1)*M(n-1))/(n+2) if n>1 else 1
@CachedFunction
def catalan(n): return ((4*n-2)*catalan(n-1))/(n+1) if n>0 else 1
return catalan(n) - (n-1)*M(n-2) - M(n-1) if n!=0 else 0
[A217539(i) for i in (0..28)]
A217540
Scambler statistic on Dyck paths. Triangle T(n, k) read by rows, n >= 0, -n <= k <= n, T(n, k) is the number of Dyck paths of semilength n and k = number of returns + number of hills - number of peaks.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 1, 0, 0, 1, 3, 4, 2, 3, 0, 1, 0, 0, 1, 6, 10, 9, 8, 3, 4, 0, 1, 0, 0, 1, 10, 25, 30, 26, 17, 13, 4, 5, 0, 1, 0, 0, 1, 15, 56, 90, 90, 70, 49, 27, 19, 5, 6, 0, 1, 0, 0, 1, 21, 112, 245, 301, 266, 197, 128, 80, 39, 26, 6, 7, 0, 1
Offset: 0
[n\k] -8,-7,-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8
-----------------------------------------------------------------------
[ 0 ] 1,
[ 1 ] 0, 0, 1,
[ 2 ] 0, 0, 1, 0, 1,
[ 3 ] 0, 0, 1, 1, 2, 0, 1,
[ 4 ] 0, 0, 1, 3, 4, 2, 3, 0, 1,
[ 5 ] 0, 0, 1, 6, 10, 9, 8, 3, 4, 0, 1,
[ 6 ] 0, 0, 1, 10, 25, 30, 26, 17, 13, 4, 5, 0, 1,
[ 7 ] 0, 0, 1, 15, 56, 90, 90, 70, 49, 27, 19, 5, 6, 0, 1,
[ 8 ] 0, 0, 1, 21, 112, 245, 301, 266, 197, 128, 80, 39, 26, 6, 7, 0, 1
.
T(5, -2) = 6 counting the Dyck words
[1101011000] (()()(())) [1101100100] (()(())()) [1101101000] (()(()()))
[1110010100] ((())()()) [1110100100] ((()())()) [1110101000] ((()()())) .
-
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, z, expand(`if`(y=0, z, 1)*(b(x-1, y+1, true)
+b(x-1, y-1, false)*`if`(t and y<>1, 1/z, 1)))))
end:
T:= n-> `if`(n=0, 1, (p-> seq(coeff(p, z, i), i=-n..n))
(b(2*n-1, 1, true))):
seq(T(n), n=0..10); # Alois P. Heinz, Jun 10 2014
-
b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, z, Expand[If[y == 0, z, 1]*(b[x-1, y+1, True]+b[x-1, y-1, False]*If[t && y != 1, 1/z, 1])]]]; T[n_] := If[n == 0, 1, Function[p, Table[Coefficient[p, z, i], {i, -n, n}]][b[2*n-1, 1, True]]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Oct 24 2016, after Alois P. Heinz *)
-
def A217540(n, k):
def characteristic(d):
count = 1
h = d.heights()
for i in (1..len(d)-1):
if d[i-1]==1 and d[i]==0: count -= 1
if h[i]==0: count +=1
else:
if h[i-1]==0 and h[i+1]==0: count += 1
return count
if n == 0: return 1
count = 0
for d in DyckWords(n):
if k == characteristic(d): count += 1
return count
for n in (0..6): [A217540(n, k) for k in (-n..n)]
A194589
a(n) = A194588(n) - A005043(n); complementary Riordan numbers.
Original entry on oeis.org
0, 0, 1, 1, 5, 11, 34, 92, 265, 751, 2156, 6194, 17874, 51702, 149941, 435749, 1268761, 3700391, 10808548, 31613474, 92577784, 271407896, 796484503, 2339561795, 6877992334, 20236257626, 59581937299, 175546527727, 517538571125, 1526679067331, 4505996000730
Offset: 0
-
# First method, describes the derivation:
A056040 := n -> n!/iquo(n,2)!^2:
A057977 := n -> A056040(n)/(iquo(n,2)+1);
A001006 := n -> add(binomial(n,k)*A057977(k)*irem(k+1,2),k=0..n):
A005043 := n -> `if`(n=0,1,A001006(n-1)-A005043(n-1)):
A189912 := n -> add(binomial(n,k)*A057977(k),k=0..n):
A194588 := n -> `if`(n=0,1,A189912(n-1)-A194588(n-1)):
A194589 := n -> A194588(n)-A005043(n):
# Second method, more efficient:
A100071 := n -> A056040(n)*(n/2)^(n-1 mod 2):
A194589 := proc(n) local k;
(n mod 2)+(1/2)*add((-1)^k*binomial(n,k)*A100071(k+1),k=1..n) end:
# Alternatively:
a := n -> `if`(n<3,iquo(n,2),hypergeom([1-n/2,-n,3/2-n/2],[1,2-n],4)): seq(simplify(a(n)), n=0..30); # Peter Luschny, Mar 07 2017
-
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Mod[n, 2] + (1/2)*Sum[(-1)^k*Binomial[n, k]*2^-Mod[k, 2]*(k+1)^Mod[k, 2]*sf[k+1], {k, 1, n}]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 30 2013, from 2nd method *)
Table[If[n < 3, Quotient[n, 2], HypergeometricPFQ[{1 - n/2, -n, 3/2 - n/2}, {1, 2-n}, 4]], {n,0,30}] (* Peter Luschny, Mar 07 2017 *)
-
a(n):=sum(binomial(n+2,k)*binomial(n-k,k),k,0,(n)/2); /* Vladimir Kruchinin, Sep 28 2015 */
-
a(n) = sum(k=0, n/2, binomial(n+2,k)*binomial(n-k,k));
vector(30, n, a(n-3)) \\ Altug Alkan, Sep 28 2015
A359364
Triangle read by rows. The Motzkin triangle, the coefficients of the Motzkin polynomials. M(n, k) = binomial(n, k) * CatalanNumber(k/2) if k is even, otherwise 0.
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 6, 0, 2, 1, 0, 10, 0, 10, 0, 1, 0, 15, 0, 30, 0, 5, 1, 0, 21, 0, 70, 0, 35, 0, 1, 0, 28, 0, 140, 0, 140, 0, 14, 1, 0, 36, 0, 252, 0, 420, 0, 126, 0, 1, 0, 45, 0, 420, 0, 1050, 0, 630, 0, 42, 1, 0, 55, 0, 660, 0, 2310, 0, 2310, 0, 462, 0
Offset: 0
Triangle M(n, k) starts:
[0] 1;
[1] 1, 0;
[2] 1, 0, 1;
[3] 1, 0, 3, 0;
[4] 1, 0, 6, 0, 2;
[5] 1, 0, 10, 0, 10, 0;
[6] 1, 0, 15, 0, 30, 0, 5;
[7] 1, 0, 21, 0, 70, 0, 35, 0;
[8] 1, 0, 28, 0, 140, 0, 140, 0, 14;
[9] 1, 0, 36, 0, 252, 0, 420, 0, 126, 0;
Cf.
A138364,
A107587,
A002457,
A002522,
A025179,
A025235,
A056107,
A014531,
A023426,
A091147,
A189912,
A343386,
A343773,
A359647,
A359649.
-
CatalanNumber := n -> binomial(2*n, n)/(n + 1):
M := (n, k) -> ifelse(irem(k, 2) = 1, 0, CatalanNumber(k/2)*binomial(n, k)):
for n from 0 to 9 do seq(M(n, k), k = 0..n) od;
# Alternative, as coefficients of polynomials:
p := n -> hypergeom([(1 - n)/2, -n/2], [2], (2*x)^2):
seq(print(seq(coeff(simplify(p(n)), x, k), k = 0..n)), n = 0..9);
# Using the exponential generating function:
egf := exp(x)*BesselI(1, 2*x*t)/(x*t): ser:= series(egf, x, 11):
seq(print(seq(coeff(simplify(n!*coeff(ser, x, n)), t, k), k = 0..n)), n = 0..9);
-
from functools import cache
@cache
def M(n: int, k: int) -> int:
if k % 2: return 0
if n < 3: return 1
if n == k: return (2 * (n - 1) * M(n - 2, n - 2)) // (n // 2 + 1)
return (M(n - 1, k) * n) // (n - k)
for n in range(10): print([M(n, k) for k in range(n + 1)])
A189913
Triangle read by rows: T(n,k) = binomial(n, k) * k! / (floor(k/2)! * floor((k+2)/2)!).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 3, 1, 4, 6, 12, 2, 1, 5, 10, 30, 10, 10, 1, 6, 15, 60, 30, 60, 5, 1, 7, 21, 105, 70, 210, 35, 35, 1, 8, 28, 168, 140, 560, 140, 280, 14, 1, 9, 36, 252, 252, 1260, 420, 1260, 126, 126, 1, 10, 45, 360, 420, 2520, 1050, 4200, 630, 1260, 42
Offset: 0
[0] 1
[1] 1, 1
[2] 1, 2, 1
[3] 1, 3, 3, 3
[4] 1, 4, 6, 12, 2
[5] 1, 5, 10, 30, 10, 10
[6] 1, 6, 15, 60, 30, 60, 5
[7] 1, 7, 21, 105, 70, 210, 35, 35
-
/* As triangle */ [[Binomial(n,k)*Factorial(k)/(Factorial(Floor(k/2))*Factorial(Floor((k + 2)/2))): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jan 13 2018
-
A189913 := (n,k) -> binomial(n,k)*(k!/iquo(k,2)!^2)/(iquo(k,2)+1):
seq(print(seq(A189913(n,k),k=0..n)),n=0..7);
-
T[n_, k_] := Binomial[n, k]*k!/((Floor[k/2])!*(Floor[(k + 2)/2])!); Table[T[n, k], {n, 0, 10}, {k, 0, n}]// Flatten (* G. C. Greubel, Jan 13 2018 *)
-
{T(n,k) = binomial(n,k)*k!/((floor(k/2))!*(floor((k+2)/2))!) };
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jan 13 2018
A274883
Triangle read by rows, T(n,k) = 2^k*binomial(n,k)*A057977(n-k) for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 1, 2, 1, 4, 4, 3, 6, 12, 8, 2, 24, 24, 32, 16, 10, 20, 120, 80, 80, 32, 5, 120, 120, 480, 240, 192, 64, 35, 70, 840, 560, 1680, 672, 448, 128, 14, 560, 560, 4480, 2240, 5376, 1792, 1024, 256, 126, 252, 5040, 3360, 20160, 8064, 16128, 4608, 2304, 512
Offset: 0
Triangle starts:
1;
1, 2;
1, 4, 4;
3, 6, 12, 8;
2, 24, 24, 32, 16;
10, 20, 120, 80, 80, 32;
5, 120, 120, 480, 240, 192, 64;
35, 70, 840, 560, 1680, 672, 448, 128;
14, 560, 560, 4480, 2240, 5376, 1792, 1024, 256;
-
T := (n,k) -> 2^k*binomial(n,k)*((n-k)!/floor((n-k)/2)!^2)/(floor((n-k)/2)+1);
seq(seq(T(n,k), k=0..n), n=0..9);
Showing 1-8 of 8 results.
Comments