A189924 a(n) = abs(Stirling1(n+2,2)) - abs(Stirling1(n+2,3)).
1, 2, 5, 15, 49, 140, -64, -8540, -146124, -2124936, -30374136, -445116672, -6793958016, -108691150464, -1826654613120, -32257962443520, -598196854045440, -11635261535301120, -237044583523514880, -5050811716879104000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..445
Crossrefs
Cf. A081047 (column k=2).
Programs
-
Magma
[Abs(StirlingFirst(n+2,2)) - Abs(StirlingFirst(n+2,3)): n in [0..30]]; // G. C. Greubel, Jan 13 2018
-
Mathematica
Table[Abs[StirlingS1[n+2,2]]-Abs[StirlingS1[n+2,3]],{n,0,20}] (* Harvey P. Dale, May 21 2015 *)
-
PARI
a(n)=abs(stirling(n+2,2))-abs(stirling(n+2,3)) \\ Charles R Greathouse IV, Jun 27 2011
Formula
a(n) = abs(Stirling1(n+2,2)) - abs(Stirling1(n+2,3)), with the unsigned Stirling1 numbers abs(Stirling1(n,k)) = A132393(n,k).
E.g.f.: (1/2)*(2-log(1-x)^2)/(1-x)^2 (from differentiating three times (1-x)*((-log(1-x))^3)/3!).
Comments