A189988 Numbers with prime factorization p^2*q^4.
144, 324, 400, 784, 1936, 2025, 2500, 2704, 3969, 4624, 5625, 5776, 8464, 9604, 9801, 13456, 13689, 15376, 21609, 21904, 23409, 26896, 29241, 29584, 30625, 35344, 42849, 44944, 55696, 58564, 59536, 60025, 68121, 71824, 75625, 77841
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Will Nicholes, Prime Signatures
- Index to sequences related to prime signature
Programs
-
Mathematica
f[n_]:=Sort[Last/@FactorInteger[n]]=={2,4}; Select[Range[150000],f] Module[{upto=80000},Select[Union[Flatten[{#[[1]]^2 #[[2]]^4,#[[1]]^4 #[[2]]^2}&/@ Subsets[Prime[Range[Sqrt[upto/16]]],{2}]]],#<=upto&]] (* Harvey P. Dale, Dec 15 2017 *)
-
PARI
list(lim)=my(v=List(),t);forprime(p=2, (lim\4)^(1/4), t=p^4;forprime(q=2, sqrt(lim\t), if(p==q, next);listput(v,t*q^2))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
-
Python
from math import isqrt from sympy import primepi, integer_nthroot, primerange def A189988(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(isqrt(x//p**4)) for p in primerange(integer_nthroot(x,4)[0]+1))+primepi(integer_nthroot(x,6)[0]) return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025
Formula
Sum_{n>=1} 1/a(n) = P(2)*P(4) - P(6) = A085548 * A085964 - A085966 = 0.017749..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020
a(n) = A054753(n)^2. - R. J. Mathar, May 05 2023
Comments