A189996 Bott periodicity: the homotopy groups of the stable orthogonal group are periodic with period 8 and repeat like [2, 2, 1, 0, 1, 1, 1, 0].
2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Bott Periodicity Theorem
- Wikipedia, Bott periodicity
- Wikipedia, Orthogonal group
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1).
Crossrefs
Cf. A048648.
Programs
-
Mathematica
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1},{2, 2, 1, 0, 1, 1, 1, 0},104] (* Ray Chandler, Aug 25 2015 *) PadRight[{},120,{2,2,1,0,1,1,1,0}] (* Harvey P. Dale, Jun 13 2017 *)
-
PARI
a(n)=[2, 2, 1, 0, 1, 1, 1, 0][n%8+1] \\ Charles R Greathouse IV, Jul 13 2016
-
PARI
Vec((2 + 2*x + x^2 + x^4 + x^5 + x^6) / ((1 - x)*(1 + x)*(1 + x^2)*(1 + x^4)) + O(x^90)) \\ Colin Barker, Nov 02 2019
Formula
a(n) = 2, 2, 1, 0, 1, 1, 1, 0 if n == 0, 1, 2, 3, 4, 5, 6, 7 (mod 8), respectively.
From Colin Barker, Nov 02 2019: (Start)
G.f.: (2 + 2*x + x^2 + x^4 + x^5 + x^6) / ((1 - x)*(1 + x)*(1 + x^2)*(1 + x^4)).
a(n) = a(n-8) for n>7.
(End)
Comments