cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A190115 Numbers with prime factorization p^2*q^3*r^4 where p, q, and r are distinct primes.

Original entry on oeis.org

10800, 16200, 18000, 21168, 31752, 40500, 45000, 49392, 52272, 67500, 73008, 78408, 98000, 109512, 111132, 124848, 137200, 155952, 172872, 187272, 191664, 228528, 233928, 242000, 245000, 259308, 316368, 338000, 342792, 363312, 415152
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,3,4};Select[Range[900000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\72)^(1/4), t1=p^4;forprime(q=2, (lim\t1)^(1/3), if(p==q, next);t2=t1*q^3;forprime(r=2, sqrt(lim\t2), if(p==r||q==r, next);listput(v,t2*r^2)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A190115(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(isqrt(x//(r**4*q**3))) for r in primerange(integer_nthroot(x,4)[0]+1) for q in primerange(integer_nthroot(x//r**4,3)[0]+1))+sum(primepi(integer_nthroot(x//p**5,4)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))+sum(primepi(integer_nthroot(x//p**6,3)[0]) for p in primerange(integer_nthroot(x,6)[0]+1))+sum(primepi(isqrt(x//p**7)) for p in primerange(integer_nthroot(x,7)[0]+1))-(primepi(integer_nthroot(x,9)[0])<<1)
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Formula

Sum_{n>=1} 1/a(n) = P(2)*P(3)*P(4) - P(2)*P(7) - P(3)*P(6) - P(4)*P(5) + 2*P(9) = 0.00061171477910848082277..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024

A175756 Numbers with 50 divisors.

Original entry on oeis.org

6480, 9072, 14256, 16848, 22032, 24624, 29808, 30000, 37584, 40176, 41472, 47952, 53136, 55728, 60912, 68688, 70000, 76464, 79056, 86832, 92016, 94608, 101250, 102384, 107568, 110000, 115248, 115344, 125712, 130000, 130896, 133488
Offset: 1

Views

Author

Jaroslav Krizek, Aug 27 2010

Keywords

Comments

Numbers of the forms p^49, p^24*q^1, p^9*q^4 and p^4*q^4*r^1 (A190012), where p, q and r are distinct primes.

Crossrefs

Programs

Formula

A000005(a(n))=50.

A190114 Numbers with prime factorization p^2*q^2*r^5 where p, q, and r are distinct primes.

Original entry on oeis.org

7200, 14112, 24300, 34848, 39200, 47628, 48672, 83232, 96800, 103968, 112500, 117612, 135200, 152352, 164268, 189728, 231200, 242208, 264992, 276768, 280908, 288800, 297675, 350892, 394272, 423200, 453152, 484128, 514188, 532512, 566048
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,2,5};Select[Range[900000],f]
    With[{upto=600000},Select[#[[1]]^2 #[[2]]^2 #[[3]]^5&/@ Flatten[ Permutations/@ Subsets[Prime[Range[Ceiling[Surd[upto,5]+1]]],{3}],1]// Union,#<=upto&]] (* Harvey P. Dale, Jul 29 2018 *)
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\36)^(1/5), t1=p^5;forprime(q=2, sqrt(lim\t1), if(p==q, next);t2=t1*q^2;forprime(r=q+1, sqrt(lim\t2), if(p==r,next);listput(v,t2*r^2)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011

Formula

Sum_{n>=1} 1/a(n) = P(2)^2*P(5)/2 - P(2)*P(8)/2 - P(4)*P(5)/2 - P(2)*P(7) + P(9) = 0.00053812627050585644544..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024
Showing 1-3 of 3 results.