A190015 Triangle T(n,k) for solving differential equation A'(x)=G(A(x)), G(0)!=0.
1, 1, 2, 1, 6, 8, 1, 24, 42, 16, 22, 1, 120, 264, 180, 192, 136, 52, 1, 720, 1920, 1248, 540, 1824, 2304, 272, 732, 720, 114, 1, 5040, 15840, 10080, 8064, 18720, 22752, 9612, 7056, 10224, 17928, 3968, 2538, 3072, 240, 1, 40320, 146160, 92160, 70560, 32256, 207360, 249120, 193536, 73728, 61560, 144720, 246816, 101844, 142704, 7936, 51048, 110448, 34304, 8334, 11616, 494, 1
Offset: 0
Examples
Triangle begins: 1; 1; 2,1; 6,8,1; 24,42,16,22,1; 120,264,180,192,136,52,1; 720,1920,1248,540,1824,2304,272,732,720,114,1; 5040,15840,10080,8064,18720,22752,9612,7056,10224,17928,3968,2538,3072,240,1; 40320,146160,92160,70560,32256,207360,249120,193536,73728,61560,144720,246816, 101844,142704,7936,51048,110448,34304,8334,11616,494,1; Example for n=5: partitions of number 9 into 5 parts in lexicographic order: [1,1,1,1,5] [1,1,1,2,4] [1,1,1,3,3] [1,1,2,2,3] [1,2,2,2,2] a(5) = (24*g(0)^4*g(4) +42*g(0)^3*g(1)*g(3) +16*g(0)^3*g(2)^2 +22*g(0)^2*g(1)^2*g(2) +g(0)*g(1)^4)/5!.
Programs
-
Maxima
/* array of triangle */ M:[1,1,2,1,6,8,1,24,42,16,22,1,120,264,180,192,136,52,1,720,1920,1248,540,1824,2304,272,732,720,114,1,5040,15840,10080,8064,18720,22752,9612,7056,10224,17928,3968,2538,3072,240,1,40320,146160,92160,70560,32256,207360,249120,193536,73728,61560,144720,246816,101844,142704,7936,51048,110448,34304,8334,11616,494,1]; /* function of triangle */ T(n,k):=M[sum(num_partitions(i),i,0,n-1)+k+1]; /* count number of partitions of n into m parts */ b(n,m):=if n
-
Maxima
/* Find triangle */ Co(n,k):=if k=1 then a(n) else sum(a(i+1)*Co(n-i-1,k-1),i,0,n-k); a(n):=if n=1 then 1 else 1/n*sum(Co(n-1,k)*x(k),k,1,n-1); makelist(ratsimp(n!*a(n)),n,1,5); /* Vladimir Kruchinin, Jun 15 2012 */
-
PARI
serlaplace( serreverse( intformal( 1 / sum(n=0, 9, eval(Str("g"n)) * x^n, x * O(x^9))))) /* Michael Somos, Oct 22 2014 */
Comments