cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190018 Union of A000045, A007598, and A059929.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 9, 10, 13, 21, 24, 25, 34, 55, 64, 65, 89, 144, 168, 169, 233, 377, 441, 442, 610, 987, 1155, 1156, 1597, 2584, 3025, 3026, 4181, 6765, 7920, 7921, 10946, 17711, 20736, 20737, 28657, 46368, 54288, 54289, 75025, 121393, 142129, 142130
Offset: 0

Views

Author

Reinhard Zumkeller, May 04 2011

Keywords

Comments

Each term is F(k) or F(k)^2 or F(k-1)*F(k+1) for appropriate k, F=A000045, the Fibonacci numbers.

Examples

			a(10) = F(8) = 21;
a(11) = F(4) * F(6) = 3 * 8 = 24;
a(12) = F(5)^2 = 5^2 = 25;
a(13) = F(9) = 34;
a(14) = F(10) = 55;
a(15) = F(6)^2 = 8^2 = 64;
a(16) = F(5) * F(7) = 5 * 13 = 65;
a(17) = F(11) = 89;
a(18) = F(12) = 144;
a(19) = F(6) * F(8) = 8 * 21 = 168;
a(20) = F(7)^2 = 13^2 = 169.
		

Programs

  • Haskell
    a190018 n = a190018_list !! n
    a190018_list = 0 : drop 2 (merge (merge fibs $
        map (^ 2) fibs) $ zipWith (*) fibs (drop 2 fibs))
        where fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
              merge xs'@(x:xs) ys'@(y:ys)
                 | x < y     = x : merge xs ys'
                 | x == y    = x : merge xs ys
                 | otherwise = y : merge xs' ys
    
  • Maple
    a:= n-> `if`(n<6, n, (Matrix(15, (i, j)-> `if`(j=i+1, 1, `if`(i=15, [-1$4,2$8,-1$3][j], 0)))^n. <<0, 1, 1, 0, 0, [1$4][], 2, 2, 3, 3, 4, 5>>)[10, 1]): seq(a(n), n=0..50);  # Alois P. Heinz, May 04 2011
  • Mathematica
    CoefficientList[Series[-x*(x^16+2*x^15+4*x^14 +5*x^13+3*x^12+x^11 -4*x^10 -7*x^9-10*x^8 -12*x^7-14*x^6-14*x^5 -12*x^4-10*x^3-6*x^2-3*x-1)/((x+1)*(x^2+1)*(x^4+1)*(x^4+x^2-1)*(x^4-x^2-1)), {x, 0, 50}], x] (* G. C. Greubel, Jan 11 2018 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(-x*(x^16+2*x^15+4*x^14 +5*x^13 +3*x^12+x^11 -4*x^10-7*x^9-10*x^8 -12*x^7-14*x^6-14*x^5 -12*x^4-10*x^3 -6*x^2-3*x-1)/((x+1)*(x^2+1)*(x^4+1)*(x^4+x^2-1)*(x^4-x^2-1)))) \\ G. C. Greubel, Jan 11 2018

Formula

G.f.: -x*(x^16+2*x^15+4*x^14 +5*x^13+3*x^12+x^11 -4*x^10-7*x^9-10*x^8 -12*x^7-14*x^6-14*x^5 -12*x^4-10*x^3-6*x^2-3*x-1) / ((x+1)*(x^2+1)*(x^4+1)*(x^4+x^2-1)*(x^4-x^2-1)). - Alois P. Heinz, May 05 2011