A190018 Union of A000045, A007598, and A059929.
0, 1, 2, 3, 4, 5, 8, 9, 10, 13, 21, 24, 25, 34, 55, 64, 65, 89, 144, 168, 169, 233, 377, 441, 442, 610, 987, 1155, 1156, 1597, 2584, 3025, 3026, 4181, 6765, 7920, 7921, 10946, 17711, 20736, 20737, 28657, 46368, 54288, 54289, 75025, 121393, 142129, 142130
Offset: 0
Keywords
Examples
a(10) = F(8) = 21; a(11) = F(4) * F(6) = 3 * 8 = 24; a(12) = F(5)^2 = 5^2 = 25; a(13) = F(9) = 34; a(14) = F(10) = 55; a(15) = F(6)^2 = 8^2 = 64; a(16) = F(5) * F(7) = 5 * 13 = 65; a(17) = F(11) = 89; a(18) = F(12) = 144; a(19) = F(6) * F(8) = 8 * 21 = 168; a(20) = F(7)^2 = 13^2 = 169.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
Programs
-
Haskell
a190018 n = a190018_list !! n a190018_list = 0 : drop 2 (merge (merge fibs $ map (^ 2) fibs) $ zipWith (*) fibs (drop 2 fibs)) where fibs = 0 : 1 : zipWith (+) fibs (tail fibs) merge xs'@(x:xs) ys'@(y:ys) | x < y = x : merge xs ys' | x == y = x : merge xs ys | otherwise = y : merge xs' ys
-
Maple
a:= n-> `if`(n<6, n, (Matrix(15, (i, j)-> `if`(j=i+1, 1, `if`(i=15, [-1$4,2$8,-1$3][j], 0)))^n. <<0, 1, 1, 0, 0, [1$4][], 2, 2, 3, 3, 4, 5>>)[10, 1]): seq(a(n), n=0..50); # Alois P. Heinz, May 04 2011
-
Mathematica
CoefficientList[Series[-x*(x^16+2*x^15+4*x^14 +5*x^13+3*x^12+x^11 -4*x^10 -7*x^9-10*x^8 -12*x^7-14*x^6-14*x^5 -12*x^4-10*x^3-6*x^2-3*x-1)/((x+1)*(x^2+1)*(x^4+1)*(x^4+x^2-1)*(x^4-x^2-1)), {x, 0, 50}], x] (* G. C. Greubel, Jan 11 2018 *)
-
PARI
x='x+O('x^50); concat([0], Vec(-x*(x^16+2*x^15+4*x^14 +5*x^13 +3*x^12+x^11 -4*x^10-7*x^9-10*x^8 -12*x^7-14*x^6-14*x^5 -12*x^4-10*x^3 -6*x^2-3*x-1)/((x+1)*(x^2+1)*(x^4+1)*(x^4+x^2-1)*(x^4-x^2-1)))) \\ G. C. Greubel, Jan 11 2018
Formula
G.f.: -x*(x^16+2*x^15+4*x^14 +5*x^13+3*x^12+x^11 -4*x^10-7*x^9-10*x^8 -12*x^7-14*x^6-14*x^5 -12*x^4-10*x^3-6*x^2-3*x-1) / ((x+1)*(x^2+1)*(x^4+1)*(x^4+x^2-1)*(x^4-x^2-1)). - Alois P. Heinz, May 05 2011
Comments