cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190119 a(n) = Sum_{k=1..n} lcm(k,k')/k, where k' is arithmetic derivative of k.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 10, 13, 15, 22, 23, 27, 28, 37, 45, 47, 48, 55, 56, 62, 72, 85, 86, 97, 99, 114, 115, 123, 124, 155, 156, 161, 175, 194, 206, 211, 212, 233, 249, 266, 267, 308, 309, 321, 334, 359, 360, 367, 369, 378, 398, 412, 413, 416, 432, 455, 477, 508, 509, 532, 533, 566, 583, 586, 604, 665, 666, 684, 710, 769
Offset: 1

Views

Author

Giorgio Balzarotti, May 04 2011

Keywords

Comments

Use lcm(1,0)=0.

Examples

			lcm(1,1')/1+lcm(2,2')/2+lcm(3,3')/3=0+2/2+3/3=2 ->a(3)=2.
		

Crossrefs

Cf. A003415.

Programs

  • Maple
    der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]):
    seq(add(lcm(der(i),i)/i,i=1..n),n=1..50);
  • Mathematica
    A003415[n_]:= If[Abs@n < 2, 0, n Total[#2/#1 & @@@FactorInteger[Abs@n]]]; Table[Sum[LCM[k, A003415[k]]/k, {k, 1, n}], {n,1,50}] (* G. C. Greubel, Dec 29 2017 *)
  • PARI
    {A003415(n, f)=sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i])};
    for(n=1,20, print1(sum(k=1,n,lcm(k,A003415(k))/k), ", ")) \\ G. C. Greubel, Dec 29 2017