cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190156 Expansion of (1-x-3*x^2-sqrt(1-2*x-5*x^2+2*x^3+x^4))/(2*x^3*(1+2*x)).

Original entry on oeis.org

1, 1, 4, 8, 24, 61, 175, 486, 1405, 4059, 11924, 35223, 105007, 314867, 950018, 2880620, 8775638, 26843704, 82420464, 253916555, 784672011, 2431695541, 7555381574, 23531026853, 73448858179, 229730744171, 719914525210, 2260031465504, 7106721944206
Offset: 0

Views

Author

Emanuele Munarini, May 05 2011

Keywords

Comments

Diagonal sums of the Riordan matrix (g(x),x*g(x)), where g(x) = (1-x-x^2-sqrt(1-2*x-5*x^2+2*x^3+x^4))/(2*x^2) (A132276).

Crossrefs

Cf. A132276.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-x-3*x^2-Sqrt(1-2*x-5*x^2+2*x^3+x^4))/(2*x^3*(1+2*x)))); // G. C. Greubel, Oct 22 2018
    
  • Maple
    T := (n, k) -> simplify(2^k*binomial(n-k, k)*hypergeom([-k, k-n-1], [2], 1/2)):
    seq(add(T(n, k), k=0..floor(n/2)), n=0..28); # Peter Luschny, Oct 19 2020
  • Mathematica
    CoefficientList[Series[(1-x-3x^2-Sqrt[1-2x-5x^2+2x^3+x^4])/(2x^3(1+2x)),{x,0,28}],x]
  • Maxima
    a(n):=sum(sum(2^(m-j+1)*binomial(n-m,j-1)*binomial(n-m+2,j)*binomial(n-m-j+1,m-j+1),j,0,n-m+2)/(n-m+2),m,0,n); /* Vladimir Kruchinin, Oct 19 2020 */
  • PARI
    x='x+O('x^66); Vec((1-x-3*x^2-sqrt(1-2*x-5*x^2+2*x^3+x^4))/(2*x^3*(1+2*x))) /* Joerg Arndt, May 15 2011 */
    

Formula

G.f.: (1-x-3*x^2-sqrt(1-2*x-5*x^2+2*x^3+x^4))/(2*x^3*(1+2*x)).
D-finite with recurrence: (n+3)*a(n) +3*a(n-1) +3*(-3*n-2)*a(n-2) +(-8*n-3)*a(n-3) +(5*n-9) *a(n-4) +2*(n-3)*a(n-5)=0. - R. J. Mathar, Oct 08 2016
a(n) = Sum_{m=0..n} Sum_{j=0..n-m+2} 2^(m-j+1)*C(n-m,j-1)*C(n-m+2,j)*C(n-m-j+1,m-j+1)/(n-m+2). - Vladimir Kruchinin, Oct 19 2020
a(n) = Sum_{k=0..floor(n/2)} 2^k*binomial(n-k, k)*hypergeom([-k, k-n-1], [2], 1/2). - Peter Luschny, Oct 19 2020