cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190173 a(n) = Sum_{1 <= i < j <= n} F(i)*F(j), where F(k) is the k-th Fibonacci number.

Original entry on oeis.org

0, 1, 5, 17, 52, 148, 408, 1101, 2937, 7777, 20504, 53912, 141520, 371113, 972573, 2547825, 6672876, 17473996, 45754280, 119797205, 313650865, 821177281, 2149916400, 5628629232, 14736064032, 38579712913, 101003317493, 264430632401, 692289215332, 1812438042052
Offset: 1

Views

Author

Emeric Deutsch, May 31 2011

Keywords

Examples

			a(4) = F(1)*F(2) + F(1)*F(3) + F(1)*F(4) + F(2)*F(3) + F(2)*F(4) + F(3)*F(4) = 1 + 2 + 3 + 2 + 3 + 6 = 17.
		

Crossrefs

Cf. A000045.

Programs

  • Magma
    [Fibonacci(n+1)^2 - Fibonacci(n+2) + (1-(-1)^n)/2: n in [1..30]]; // Vincenzo Librandi, Jun 05 2011
    
  • Maple
    with(combinat): seq(fibonacci(n+1)^2-fibonacci(n+2)+1/2-(1/2)*(-1)^n, n = 1 .. 30);
  • Mathematica
    Table[Fibonacci[n + 1]^2 - Fibonacci[n + 1] + (1 - (-1)^n)/2, {n,1,50}] (* G. C. Greubel, Mar 04 2017 *)
  • PARI
    a(n)=fibonacci(n+1)^2-fibonacci(n+2)+n%2 \\ Charles R Greathouse IV, Jun 08 2011

Formula

a(n) = F(n+1)^2 - F(n+2) + (1-(-1)^n)/2.
G.f.: x^2*(1+x-x^2)/((1-x)*(1+x)*(1-x-x^2)*(1-3*x+x^2)). - Bruno Berselli, Jun 20 2012