A190173 a(n) = Sum_{1 <= i < j <= n} F(i)*F(j), where F(k) is the k-th Fibonacci number.
0, 1, 5, 17, 52, 148, 408, 1101, 2937, 7777, 20504, 53912, 141520, 371113, 972573, 2547825, 6672876, 17473996, 45754280, 119797205, 313650865, 821177281, 2149916400, 5628629232, 14736064032, 38579712913, 101003317493, 264430632401, 692289215332, 1812438042052
Offset: 1
Examples
a(4) = F(1)*F(2) + F(1)*F(3) + F(1)*F(4) + F(2)*F(3) + F(2)*F(4) + F(3)*F(4) = 1 + 2 + 3 + 2 + 3 + 6 = 17.
Links
- Vincenzo Librandi and Bruno Berselli, Table of n, a(n) for n = 1..1000 (First 211 terms from Vincenzo Librandi)
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-6,4,2,-1).
Crossrefs
Cf. A000045.
Programs
-
Magma
[Fibonacci(n+1)^2 - Fibonacci(n+2) + (1-(-1)^n)/2: n in [1..30]]; // Vincenzo Librandi, Jun 05 2011
-
Maple
with(combinat): seq(fibonacci(n+1)^2-fibonacci(n+2)+1/2-(1/2)*(-1)^n, n = 1 .. 30);
-
Mathematica
Table[Fibonacci[n + 1]^2 - Fibonacci[n + 1] + (1 - (-1)^n)/2, {n,1,50}] (* G. C. Greubel, Mar 04 2017 *)
-
PARI
a(n)=fibonacci(n+1)^2-fibonacci(n+2)+n%2 \\ Charles R Greathouse IV, Jun 08 2011
Formula
a(n) = F(n+1)^2 - F(n+2) + (1-(-1)^n)/2.
G.f.: x^2*(1+x-x^2)/((1-x)*(1+x)*(1-x-x^2)*(1-3*x+x^2)). - Bruno Berselli, Jun 20 2012