cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190180 Continued fraction of (1+sqrt(-3+4*sqrt(2)))/2.

Original entry on oeis.org

1, 3, 5, 1, 2, 1, 1, 1, 2, 1, 12, 1, 5, 1, 1, 2, 1, 14, 2, 9, 11, 1, 12, 1, 2, 1, 832, 1, 2, 2, 5, 1, 1, 17, 1, 2, 1, 9, 1, 12, 1, 1, 1, 6, 3, 2, 1, 1, 6, 3, 1, 1, 1, 2, 2, 1, 3, 1, 3, 3, 1, 2, 1, 45, 1, 1, 1, 1, 62, 9, 1, 1, 2, 3, 1, 6, 1, 3, 5, 1
Offset: 1

Views

Author

Clark Kimberling, May 05 2011

Keywords

Comments

Equivalent to the periodic continued fraction [1,r,1,r,...] where r=1+sqrt(2), the silver ratio. For geometric interpretations of both continued fractions, see A189979 and A188635.
1 followed by A190178.

Crossrefs

Programs

  • Magma
    ContinuedFraction((1+Sqrt(-3+4*Sqrt(2)))/2); // G. C. Greubel, Dec 28 2017
  • Mathematica
    r = 1 + 2^(1/2);
    FromContinuedFraction[{1, r, {1, r}}]
    FullSimplify[%]
    ContinuedFraction[%, 100]  (* A190180 *)
    RealDigits[N[%%, 120]]     (* A190179 *)
    N[%%%, 40]
    ContinuedFraction[(1 + Sqrt[-3 + 4*Sqrt[2]])/2, 100] (* G. C. Greubel, Dec 28 2017 *)
  • PARI
    contfrac((1+sqrt(-3+4*sqrt(2)))/2) \\ G. C. Greubel, Dec 28 2017