cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190215 Riordan matrix ((1-x-x^2)/(1-2x-x^2),(x-x^2-x^3)/(1-2x-x^2)).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 12, 14, 9, 4, 1, 29, 38, 28, 14, 5, 1, 70, 102, 84, 48, 20, 6, 1, 169, 271, 246, 157, 75, 27, 7, 1, 408, 714, 707, 496, 265, 110, 35, 8, 1, 985, 1868, 2001, 1526, 896, 417, 154, 44, 9, 1, 2378, 4858, 5592, 4596, 2930, 1500, 623, 208, 54, 10, 1, 5741, 12569, 15461, 13602, 9330, 5186, 2373, 894, 273, 65, 11, 1
Offset: 0

Views

Author

Emanuele Munarini, May 10 2011

Keywords

Comments

Row sums = A052963.
Diagonal sums = A052960.
Central coefficients = A190315.

Examples

			Triangle begins:
    1;
    1,   1;
    2,   2,   1;
    5,   5,   3,   1;
   12,  14,   9,   4,   1;
   29,  38,  28,  14,   5,   1;
   70, 102,  84,  48,  20,   6,   1;
  169, 271, 246, 157,  75,  27,   7,   1;
  408, 714, 707, 496, 265, 110,  35,   8,   1;
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Sum[Binomial[i+k,k]Sum[Binomial[i+j-1,j]Binomial[j,n-k-i-j],{j,0,n-k-i}],{i,0,n-k}],{n,0,12},{k,0,n}]]
  • Maxima
    create_list(sum(binomial(i+k,k)*sum(binomial(i+j-1,j)*binomial(j,n-k-i-j),j,0,n-k-i),i,0,n-k),n,0,12,k,0,n);
    
  • PARI
    for(n=0,10, for(k=0,n, print1(sum(j=0,n-k, binomial(j+k,k)* sum(r=0,n-k-j, binomial(j+r-1,r)*binomial(r,n-k-j-r))), ", "))) \\ G. C. Greubel, Dec 27 2017

Formula

T(n,k) = Sum_{i=0..n-k} (binomial(i+k,k)*Sum_{j=0..n-k-i} (binomial(i+j-1,j)*binomial(j,n-k-i-j) )).
Recurrence: T(n+3,k+1) = 2 T(n+2,k+1) + T(n+2,k) + T(n+1,k+1) - T(n+1,k) - T(n,k).