cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A190315 Central coefficients of the Riordan matrix ((1-x-x^2)/(1-2x-x^2),(x-x^2-x^3)/(1-2x-x^2)) (A190215).

Original entry on oeis.org

1, 2, 9, 48, 265, 1500, 8638, 50360, 296325, 1756160, 10467556, 62683896, 376838098, 2272896626, 13747543035, 83354081728, 506467851061, 3083121435312, 18799746616104, 114804614071760, 702016963933404, 4297947201746176, 26342178216979384
Offset: 0

Views

Author

Emanuele Munarini, May 10 2011

Keywords

Crossrefs

Cf. A190215.

Programs

  • Mathematica
    Table[Sum[Binomial[n+i,n]Sum[Binomial[i+j-1,j]Binomial[j,n-i-j],{j,0,n-i}],{i,0,n}],{n,0,22}]
  • Maxima
    makelist(sum(binomial(n+i,n)*sum(binomial(i+j-1,j)*binomial(j,n-i-j),j,0,n-i),i,0,n),n,0,22);
    
  • PARI
    for(n=0,30, print1(sum(k=0,n, binomial(n+k,n)*sum(j=0,n-k, binomial(k+j-1,j)*binomial(j,n-k-j))), ", ")) \\ G. C. Greubel, Mar 04 2018

Formula

a(n) = T(2*n,n), where T(n,k)=A190215(n,k).
a(n) = Sum_{i=0..n} binomial(n+i,n)*Sum_{j=0..n-i} binomial(i+j-1,j)*binomial(j,n-i-j).

A052960 Expansion of ( 1-x-x^2 ) / ( 1-2*x-2*x^2+x^3+x^4 ).

Original entry on oeis.org

1, 1, 3, 7, 18, 46, 118, 303, 778, 1998, 5131, 13177, 33840, 86905, 223182, 573157, 1471933, 3780093, 9707713, 24930522, 64024444, 164422126, 422254905, 1084399096, 2784861432, 7151844025, 18366756913, 47167941348, 121132691065
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Diagonal sums of the Riordan matrix ((1-x-x^2)/(1-2*x-x^2), (x-x^2-x^3) / (1-2*x-x^2)) (A190215). - Emanuele Munarini, May 10 2011

Programs

  • GAP
    a:=[1,1,3,7];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2]-a[n-3] -a[n-4]; od; a; # G. C. Greubel, Oct 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x-x^2)/(1-2*x-2*x^2+x^3+x^4) )); // G. C. Greubel, Oct 23 2019
    
  • Maple
    spec:= [S,{S=Sequence(Prod(Union(Sequence(Union(Prod(Z,Z),Z)),Z),Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
    seq(coeff(series((1-x-x^2)/(1-2*x-2*x^2+x^3+x^4), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 23 2019
  • Mathematica
    Table[Sum[Sum[Binomial[i+2k,2k]Binomial[i+k,n-i-2k],{k,0,n/2}],{i,0,n}],{n,0,12}] (* Emanuele Munarini, May 10 2011 *)
    LinearRecurrence[{2,2,-1,-1}, {1,1,3,7}, 30] (* G. C. Greubel, Oct 23 2019 *)
    CoefficientList[Series[(1-x-x^2)/(1-2x-2x^2+x^3+x^4),{x,0,50}],x] (* Harvey P. Dale, Jan 21 2021 *)
  • Maxima
    makelist(sum(sum(binomial(i+2*k, 2*k)*binomial(i+k, n-i-2*k), k,0,n/2),i,0,n),n,0,24); /* Emanuele Munarini, May 10 2011 */
    
  • PARI
    my(x='x+O('x^30)); Vec((1-x-x^2)/(1-2*x-2*x^2+x^3+x^4)) \\ G. C. Greubel, Oct 23 2019
    
  • Sage
    def A052960_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-x-x^2)/(1-2*x-2*x^2+x^3+x^4)).list()
    A052960_list(30) # G. C. Greubel, Oct 23 2019
    

Formula

G.f.: (1-x-x^2)/(1-2*x-2*x^2+x^3+x^4).
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3) - a(n-4).
a(n) = Sum_{alpha=RootOf(1-2*z-2*z^2+z^3+z^4)} (1/331)*(25 + 75*alpha - 6*alpha^2 - 5*alpha^3)*alpha^(-1-n).
a(n) = Sum_{i=0..n} Sum_{k=0..n/2} binomial(i+2*k, 2*k)*binomial(i+k, n-i-2*k). - Emanuele Munarini, May 10 2011

Extensions

More terms from James Sellers, Feb 06 2000
Showing 1-2 of 2 results.