cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A165241 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,1,0,0,0,0,0,0,0,...] DELTA [1,0,1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 9, 6, 1, 8, 24, 25, 10, 1, 16, 60, 85, 55, 15, 1, 32, 144, 258, 231, 105, 21, 1, 64, 336, 728, 833, 532, 182, 28, 1, 128, 768, 1952, 2720, 2241, 1092, 294, 36, 1, 256, 1728, 5040, 8280, 8361, 5301, 2058, 450, 45, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 09 2009

Keywords

Comments

Rows sums: A006012; Diagonal sums: A052960.
The sums of each column of A117317 with its subsequent column, treated as a lower triangular matrix with an initial null column attached, or, equivalently, the products of the row polynomials p(n,y) of A117317 with (1+y) with the initial first row below added to the final result. The reversal of A117317 is A056242 with several combinatorial interpretations. - Tom Copeland, Jan 08 2017

Examples

			Triangle begins:
  1;
  1,  1;
  2,  3,  1;
  4,  9,  6,  1;
  8, 24, 25, 10,  1; ...
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = A009116(n), A000007(n), A011782(n), A006012(n), A083881(n), A081335(n), A090139(n), A145301(n), A145302(n), A145303(n), A143079(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. Sum_{k=0..n} T(n,k)*x^(n-k) = A123335(n), A000007(n), A000012(n), A006012(n), A084120(n), A090965(n), A165225(n), A165229(n), A165230(n), A165231(n), A165232(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively.
G.f.: (1-(1+y)*x)/(1-2(1+y)*x+(y+y^2)*x^2). - Philippe Deléham, Dec 19 2011
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2) with T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if nPhilippe Deléham, Dec 19 2011

Extensions

O.g.f. corrected by Tom Copeland, Jan 15 2017

A190215 Riordan matrix ((1-x-x^2)/(1-2x-x^2),(x-x^2-x^3)/(1-2x-x^2)).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 12, 14, 9, 4, 1, 29, 38, 28, 14, 5, 1, 70, 102, 84, 48, 20, 6, 1, 169, 271, 246, 157, 75, 27, 7, 1, 408, 714, 707, 496, 265, 110, 35, 8, 1, 985, 1868, 2001, 1526, 896, 417, 154, 44, 9, 1, 2378, 4858, 5592, 4596, 2930, 1500, 623, 208, 54, 10, 1, 5741, 12569, 15461, 13602, 9330, 5186, 2373, 894, 273, 65, 11, 1
Offset: 0

Views

Author

Emanuele Munarini, May 10 2011

Keywords

Comments

Row sums = A052963.
Diagonal sums = A052960.
Central coefficients = A190315.

Examples

			Triangle begins:
    1;
    1,   1;
    2,   2,   1;
    5,   5,   3,   1;
   12,  14,   9,   4,   1;
   29,  38,  28,  14,   5,   1;
   70, 102,  84,  48,  20,   6,   1;
  169, 271, 246, 157,  75,  27,   7,   1;
  408, 714, 707, 496, 265, 110,  35,   8,   1;
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Sum[Binomial[i+k,k]Sum[Binomial[i+j-1,j]Binomial[j,n-k-i-j],{j,0,n-k-i}],{i,0,n-k}],{n,0,12},{k,0,n}]]
  • Maxima
    create_list(sum(binomial(i+k,k)*sum(binomial(i+j-1,j)*binomial(j,n-k-i-j),j,0,n-k-i),i,0,n-k),n,0,12,k,0,n);
    
  • PARI
    for(n=0,10, for(k=0,n, print1(sum(j=0,n-k, binomial(j+k,k)* sum(r=0,n-k-j, binomial(j+r-1,r)*binomial(r,n-k-j-r))), ", "))) \\ G. C. Greubel, Dec 27 2017

Formula

T(n,k) = Sum_{i=0..n-k} (binomial(i+k,k)*Sum_{j=0..n-k-i} (binomial(i+j-1,j)*binomial(j,n-k-i-j) )).
Recurrence: T(n+3,k+1) = 2 T(n+2,k+1) + T(n+2,k) + T(n+1,k+1) - T(n+1,k) - T(n,k).

A112973 Riordan array (1/(1-x-x^2), x(1+x)/(1-x-x^2)^2).

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 3, 12, 7, 1, 5, 31, 31, 10, 1, 8, 73, 110, 59, 13, 1, 13, 162, 340, 267, 96, 16, 1, 21, 344, 956, 1022, 529, 142, 19, 1, 34, 707, 2507, 3479, 2416, 923, 197, 22, 1, 55, 1416, 6231, 10850, 9657, 4900, 1476, 261, 25, 1, 89, 2778, 14840, 31606, 34905
Offset: 0

Views

Author

Paul Barry, Oct 07 2005

Keywords

Comments

Row sums are A091702. Diagonal sums are A052960. First column is A000045(n+1).
Second column is A129707. - Ralf Stephan, Dec 31 2013

Examples

			Rows begin
1;
1,1;
2,4,1;
3,12,7,1;
5,31,31,10,1;
8,73,110,59,13,1;
		

Programs

  • Maxima
    T(n,k):=sum(binomial(m,n-m)*binomial(m+k,2*k),m,floor(n/2),n); /* Vladimir Kruchinin, Apr 21 2015 */

Formula

T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) - 2*T(n-3,k) - T(n-4,k), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0) = 2, T(2,1) = 4, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 21 2014
G.f.: (x^2+x-1)/((x^2+x)*y-x^4-2*x^3+x^2+2*x-1). - Vladimir Kruchinin, Apr 21 2015
T(n,k) = Sum_{m=floor(n/2)..n} C(m,n-m)*C(m+k,2*k). - Vladimir Kruchinin, Apr 21 2015

Extensions

Definition corrected by Ralf Stephan, Dec 31 2013
Showing 1-3 of 3 results.