A190275 Semiprimes of the form p*(p^2 - p + 1).
6, 21, 301, 2041, 296341, 486877, 2666437, 3420301, 4304341, 7152001, 38159521, 42387097, 54296677, 95235601, 158048281, 229971241, 265434901, 383712781, 454166017, 775307917, 972261181, 1063290841, 1304557801, 1392422041, 1730882401, 1863895261, 2631883561, 2879450461, 3714274297, 3845297341, 4070454361, 4256780041, 4849695001, 5328809461, 5722533337, 5838483601, 7218898681, 7841065621
Offset: 1
Keywords
Examples
a(1) = 6 = 2*3 = 2*(2^2-2+1). a(2) = 21 = 3*7 = 3*(3^2-3+1). a(3) = 301 = 7*43 = 7*(7^2-7+1).
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
- For Rassias conjecture: Preda Mihăilescu, Review of Problem Solving and Selected Topics in Number Theory, Newsletter of the European Mathematical Society, March 2011, p. 46.
Crossrefs
Programs
-
Maple
seq(`if`(isprime((ithprime(i)^2-ithprime(i)+1))=true,(ithprime(i)^2-ithprime(i)+1)*ithprime(i),NULL),i=1..300);
-
Mathematica
p = Select[Prime@ Range@ 500, PrimeQ[#^2 - # + 1] &]; p (p^2 - p + 1) (* Giovanni Resta, Jul 22 2019 *)
-
PARI
forprime(p=2,1e4,if(isprime(k=p^2-p+1),print1(p*k", "))) \\ Charles R Greathouse IV, May 08 2011
Comments