cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190282 Continued fraction of (1+sqrt(1+r))/r, where r=sqrt(2).

Original entry on oeis.org

1, 1, 4, 6, 1, 2, 2, 2, 1, 1, 6, 1, 179, 46, 1, 1, 3, 2, 1, 1, 3, 6, 3, 1, 1, 1, 1, 2, 1, 1, 56, 1, 1, 1, 1, 66, 1, 1, 2, 17, 8, 2, 7, 12, 1, 1, 8, 1, 2, 2, 1, 1, 2, 1, 12, 1, 2, 2, 2, 2, 1, 1, 1, 8, 1, 1, 1, 1, 2, 1, 2, 5, 1, 6, 8, 1, 1, 1, 2, 7, 1, 9, 1, 2, 5, 7, 1, 6, 1, 10, 1
Offset: 1

Views

Author

Clark Kimberling, May 07 2011

Keywords

Comments

Equivalent to the periodic continued fraction [r,2,r,2,...] where r=sqrt(2). For geometric interpretations of both continued fractions, see A190281 and A188635.
a(n) = A154748(n+1) for n > 0. - Georg Fischer, Oct 14 2018

Crossrefs

Programs

  • Magma
    ContinuedFraction((1 + Sqrt(1 + Sqrt(2)))/Sqrt(2)); // G. C. Greubel, Jan 31 2018
  • Mathematica
    ContinuedFraction[(1 + Sqrt[1 + Sqrt[2]])/Sqrt[2], 50] (* G. C. Greubel, Jan 31 2018 *)
  • PARI
    contfrac((1 + sqrt(1 + sqrt(2)))/sqrt(2)) \\ G. C. Greubel, Jan 31 2018