cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A190462 Numbers with prime factorization pqrstu^2v^2.

Original entry on oeis.org

3063060, 3423420, 4144140, 4476780, 5105100, 5225220, 5290740, 5419260, 5585580, 5705700, 6056820, 6404580, 6666660, 6832980, 6906900, 7147140, 7158060, 7304220, 7387380, 7461300, 7636860, 7657650, 7747740, 7987980, 8075340, 8163540, 8314020, 8468460
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,1,1,1,2,2}; Select[Range[6000000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2,t3,t4,t5,t6); forprime(p1=2,sqrtint(lim\60060), t1=p1^2; forprime(p2=2,sqrtint(lim\(2310*t1)), if(p2==p1, next); t2=p2^2*t1; forprime(p3=2,lim\(210*t2), if(p3==p1 || p3==p2, next); t3=p3*t2; forprime(p4=2,lim\(30*t3), if(p4==p1 || p4==p2 || p4==p3, next); t4=p4*t3; forprime(p5=2,lim\(6*t4), if(p5==p1 || p5==p2 || p5==p3 || p5==p4, next); t5=p5*t4; forprime(p6=2,lim\(2*t5), if(p6==p1 || p6==p2 || p6==p3 || p6==p4 || p6==p5, next); t6=p6*t5; forprime(p7=2,lim\t6, if(p7==p1 || p7==p2 || p7==p3 || p7==p4 || p7==p5 || p7==p6, next); listput(v, t6*p7)))))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016

Extensions

Extended by T. D. Noe, May 10 2011
Showing 1-1 of 1 results.