cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A190385 Numbers with prime factorization pqrs^3t^3.

Original entry on oeis.org

83160, 98280, 128520, 143640, 154440, 173880, 201960, 216216, 219240, 225720, 231000, 234360, 238680, 266760, 273000, 273240, 279720, 282744, 309960, 316008, 322920, 325080, 334152, 344520, 348840, 355320, 357000, 368280, 373464, 382536
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,1,3,3};Select[Range[600000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2,t3,t4); forprime(p=2,sqrtnint(lim\840, 3), t1=p^3; forprime(q=2,sqrtnint(lim\(30*t1), 3), if(q==p, next); t2=q^3*t1; forprime(r=2,lim\(6*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2,lim\(2*t3), if(s==p || s==q || s==r, next); t4=s*t3; forprime(t=2,lim\t4, if(t==p || t==q || t==r || t==s, next); listput(v, t4*t)))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016

A190386 Numbers with prime factorization pqr^2s^2t^3.

Original entry on oeis.org

138600, 163800, 194040, 207900, 214200, 229320, 239400, 245700, 257400, 289800, 291060, 299880, 304920, 321300, 323400, 335160, 336600, 343980, 346500, 359100, 365400, 376200, 382200, 386100, 390600, 397800, 405720, 409500, 425880, 434700
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,2,2,3};Select[Range[600000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2,t3,t4); forprime(p=2,sqrtnint(lim\1260, 3), t1=p^3; forprime(q=2,sqrtint(lim\(60*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2,sqrtint(lim\(6*t2)), if(r==p || r==q, next); t3=r^2*t2; forprime(s=2,lim\(2*t3), if(s==p || s==q || s==r, next); t4=s*t3; forprime(t=2,lim\t4, if(t==p || t==q || t==r || t==s, next); listput(v, t4*t)))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016

A190387 Numbers with prime factorization pq^2r^2s^2t^2.

Original entry on oeis.org

485100, 573300, 749700, 762300, 837900, 1014300, 1064700, 1067220, 1278900, 1367100, 1415700, 1490580, 1631700, 1673100, 1778700, 1808100, 1820700, 1851300, 1896300, 2069100, 2072700, 2274300, 2337300, 2484300, 2504700, 2548980, 2585700
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,2,2,2,2};Select[Range[4000000],f]
    Take[(Times@@(#^{1,2,2,2,2}))&/@Flatten[Permutations[#]&/@Subsets[ Prime[ Range[ 20]],{5}],1]//Union,50] (* Harvey P. Dale, Jan 18 2020 *)
  • PARI
    list(lim)=my(v=List(),t1,t2,t3,t4); forprime(p=2,sqrtint(lim\6300), t1=p^2; forprime(q=2,sqrtint(lim\(180*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2,sqrtint(lim\(12*t2)), if(r==p || r==q, next); t3=r^2*t2; forprime(s=2,sqrtint(lim\(2*t3)), if(s==p || s==q || s==r, next); t4=s^2*t3; forprime(t=2,lim\t4, if(t==p || t==q || t==r || t==s, next); listput(v, t4*t)))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016
Showing 1-3 of 3 results.