A190405 Decimal expansion of Sum_{k>=1} (1/2)^T(k), where T=A000217 (triangular numbers); based on column 1 of the natural number array, A000027.
6, 4, 1, 6, 3, 2, 5, 6, 0, 6, 5, 5, 1, 5, 3, 8, 6, 6, 2, 9, 3, 8, 4, 2, 7, 7, 0, 2, 2, 5, 4, 2, 9, 4, 3, 4, 2, 2, 6, 0, 6, 1, 5, 3, 7, 9, 5, 6, 7, 3, 9, 7, 4, 7, 8, 0, 4, 6, 5, 1, 6, 2, 2, 3, 8, 0, 1, 4, 4, 6, 0, 3, 7, 3, 3, 3, 5, 1, 7, 7, 5, 6, 0, 0, 3, 6, 4, 1, 7, 1, 6, 2, 3, 3, 5, 9, 1, 3, 3, 0, 8, 6, 0, 8, 9, 7, 3, 5, 3, 1, 6, 3, 4, 3, 6, 1, 9, 4, 6, 1
Offset: 0
Examples
0.64163256065515386629...
Links
- Danny Rorabaugh, Table of n, a(n) for n = 0..10000
- Daniel Duverney, Sommes de deux carrés et irrationalité de valeurs de fonctions thêta, Comptes rendus de l'Académie des sciences, Série 1, Mathématique, Vol. 320, No. 9 (1995), pp. 1041-1044.
Crossrefs
Cf. A000079.
Programs
-
Mathematica
RealDigits[EllipticTheta[2, 0, 1/Sqrt[2]]/2^(7/8) - 1, 10, 120] // First (* Jean-François Alcover, Feb 12 2013 *) RealDigits[Total[(1/2)^Accumulate[Range[50]]],10,120][[1]] (* Harvey P. Dale, Oct 18 2013 *) (* See also A190404 *)
-
PARI
th2(x)=2*x^.25 + 2*suminf(n=1,x^(n+1/2)^2) th2(sqrt(.5))/2^(7/8)-1 \\ Charles R Greathouse IV, Jun 06 2016
-
Sage
def A190405(b): # Generate the constant with b bits of precision return N(sum([(1/2)^(j*(j+1)/2) for j in range(1,b)]),b) A190405(409) # Danny Rorabaugh, Mar 25 2015
Comments