cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190405 Decimal expansion of Sum_{k>=1} (1/2)^T(k), where T=A000217 (triangular numbers); based on column 1 of the natural number array, A000027.

Original entry on oeis.org

6, 4, 1, 6, 3, 2, 5, 6, 0, 6, 5, 5, 1, 5, 3, 8, 6, 6, 2, 9, 3, 8, 4, 2, 7, 7, 0, 2, 2, 5, 4, 2, 9, 4, 3, 4, 2, 2, 6, 0, 6, 1, 5, 3, 7, 9, 5, 6, 7, 3, 9, 7, 4, 7, 8, 0, 4, 6, 5, 1, 6, 2, 2, 3, 8, 0, 1, 4, 4, 6, 0, 3, 7, 3, 3, 3, 5, 1, 7, 7, 5, 6, 0, 0, 3, 6, 4, 1, 7, 1, 6, 2, 3, 3, 5, 9, 1, 3, 3, 0, 8, 6, 0, 8, 9, 7, 3, 5, 3, 1, 6, 3, 4, 3, 6, 1, 9, 4, 6, 1
Offset: 0

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

See A190404.
Binary expansion is .1010010001... (A023531). - Rick L. Shepherd, Jan 05 2014
From Amiram Eldar, Dec 07 2020: (Start)
This constant is not a quadratic irrational (Duverney, 1995).
The Engel expansion of this constant are the powers of 2 (A000079) above 1. (End)

Examples

			0.64163256065515386629...
		

Crossrefs

A190404: (1/2)(1 + Sum_{k>=1} (1/2)^T(k)), where T = A000217 (triangular numbers).
A190405: Sum_{k>=1} (1/2)^T(k), where T = A000217 (triangular numbers).
A190406: Sum_{k>=1} (1/2)^S(k-1), where S = A001844 (centered square numbers).
A190407: Sum_{k>=1} (1/2)^V(k), where V = A058331 (1 + 2*k^2).
Cf. A000079.

Programs

  • Mathematica
    RealDigits[EllipticTheta[2, 0, 1/Sqrt[2]]/2^(7/8) - 1, 10, 120] // First (* Jean-François Alcover, Feb 12 2013 *)
    RealDigits[Total[(1/2)^Accumulate[Range[50]]],10,120][[1]] (* Harvey P. Dale, Oct 18 2013 *)
    (* See also A190404 *)
  • PARI
    th2(x)=2*x^.25 + 2*suminf(n=1,x^(n+1/2)^2)
    th2(sqrt(.5))/2^(7/8)-1 \\ Charles R Greathouse IV, Jun 06 2016
  • Sage
    def A190405(b):  # Generate the constant with b bits of precision
        return N(sum([(1/2)^(j*(j+1)/2) for j in range(1,b)]),b)
    A190405(409) # Danny Rorabaugh, Mar 25 2015