cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A190404 Decimal expansion of (1/2)(1 + Sum_{k>=1} (1/2)^T(k)), where T=A000217 (triangular numbers); based on row 1 of the natural number array, A000027.

Original entry on oeis.org

8, 2, 0, 8, 1, 6, 2, 8, 0, 3, 2, 7, 5, 7, 6, 9, 3, 3, 1, 4, 6, 9, 2, 1, 3, 8, 5, 1, 1, 2, 7, 1, 4, 7, 1, 7, 1, 1, 3, 0, 3, 0, 7, 6, 8, 9, 7, 8, 3, 6, 9, 8, 7, 3, 9, 0, 2, 3, 2, 5, 8, 1, 1, 1, 9, 0, 0, 7, 2, 3, 0, 1, 8, 6, 6, 6, 7, 5, 8, 8, 7, 8, 0, 0, 1, 8, 2, 0, 8, 5, 8, 1, 1, 6, 7, 9, 5, 6, 6, 5, 4, 3, 0, 4, 4, 8, 6, 7, 6, 5, 8, 1, 7, 1, 8, 0, 9, 7, 3, 0
Offset: 0

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

Suppose that F={f(i,j): i>=1, j>=1} is an array of positive integers such that every positive integer occurs exactly once in F.
Let G=G(F) denote the array defined by g(i,j)=(1/2)^f(i,j);
R(i)=Sum_{j>=1} g(i,j); i-th row sum of G;
C(j)=Sum_{i>=1} g(i,j); j-th column sum of G;
U(j)=Sum_{i>=1} g(i,i+j-1); j-th upper diagonal sum of G;
L(i)=Sum_{j>=1} g(i+j,j); i-th lower diagonal sum of G;
R(odds)=Sum_{i>=1} R(2i-1); sum, odd numbered rows of G;
R(evens)=Sum_{i>=1} R(2i); sum, even numbered rows of G;
C(odds)=Sum_{j>=1} R(2j-1); sum, odd numbered cols of G;
C(evens)=Sum_{j>=1} R(2j); sum, even numbered cols of G;
UT=Sum_{j>=1} U(j); sum, upper triangular subarray of G;
LT=Sum_{i>=1} L(i); sum, lower triangular subarray of G.
...
Note that R(odds)+R(evens)=C(odds)+C(evens)=UT+LT=1.
...
For the natural number array F=A000027:
R(1)=0.820816280327576933146921385113... (A190404)
R(2)=0.160408140163788466573460692556...
R(3)=0.0177040700818942332867303462782...
R(4)=0.00103953504094711664336517313909...
R(5)=0.0000314862704735583216825865695447...
...
R(odds)=0.838551840434481240061632331355800... (A190408)
R(evens)=0.161448159565518759938367668644199...(A190409)
...
C(1)=0.64163256065515386629... (A190405)
C(2)=0.28326512131030773259...
C(3)=0.066530242620615465175...
C(4)=0.0080604852412309303507...
C(5)=0.00049597048246186070148...
...
C(odds)=0.7086590131172367153696485920526...(A190410)
C(evens)=0.29134098688276328463035140794... (A190411)
...
D(1)=0.53137210011527713548... (A190406)
D(2)=0.25391006493009715683...
D(3)=0.062744200230554270960...
D(4)=0.0078201298601943136650...
D(5)=0.00048840046110854191952...
...
E(1)=0.12695503246504857842... (A190407)
E(2)=0.015686050057638567740...
E(3)=0.00097751623252428920813...
E(4)=0.000030525028819283869970...
E(5)=0.00000047686626214460406264...
...
UT=0.8563503956097795739814618239914245448... (A190412)
LT=0.1436496043902204260185381760085754551... (A190415)

Examples

			0.820816280327576933146921385113...
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := i + (j + i - 2)(j + i - 1)/2;
    TableForm[Table[f[i,j],{i,1,10},{j,1,10}]] (* A000027 *)
    r[i_] := Sum[2^-f[i, j], {j,1,400}];    (* C(row i) *)
    c[j_] := Sum[2^-f[i,j], {i,1,400}];     (* C(col j) *)
    d[h_] := Sum[2^-f[i,i+h-1], {i,1,200}]; (* C(udiag h) *)
    e[h_] := Sum[2^-f[i+h,i], {i,1,200}];   (* C(ldiag h) *)
    RealDigits[r[1], 10, 120, -1]  (* A190404 *)
    N[r[1], 30]
    N[r[2], 30]
    N[r[3], 30]
    N[r[4], 30]
    N[r[5], 30]
    N[r[6], 30]
    RealDigits[c[1], 10, 120, -1] (* A190405 *)
    N[c[1], 20]
    N[c[2], 20]
    N[c[3], 20]
    N[c[4], 20]
    N[c[5], 20]
    N[c[6], 20]
    RealDigits[d[1], 10, 20, -1] (* A190406 *)
    N[d[1], 20]
    N[d[2], 20]
    N[d[3], 20]
    N[d[4], 20]
    N[d[5], 20]
    N[d[6], 20]
    RealDigits[e[1], 10, 20, -1] (* A190407 *)
    N[e[1], 20]
    N[e[2], 20]
    N[e[3], 20]
    N[e[4], 20]
    N[e[5], 20]
    N[e[6], 20]
  • Sage
    def A190404(b):  # Generate the constant with b bits of precision
        return N(sum([(1/2)^(1+j*(j+1)/2) for j in range(1,b)])+1/2,b)
    A190404(409) # Danny Rorabaugh, Mar 25 2015

Formula

A190404: (1/2)(1 + Sum_{k>=1} (1/2)^T(k)), where T=A000217 (triangular numbers).
A190405: Sum_{k>=1} (1/2)^T(k), where T=A000217.
A190406: Sum_{k>=1} (1/2)^S(k-1), where S=A001844 (centered square numbers).
A190407: Sum_{k>=1} (1/2)^V(k), where V=A058331 (1+2*k^2).
Equals Product_{k>=1} 1 - 1/(2^(2*k + 1) - 1). - Antonio Graciá Llorente, Oct 01 2024
Equals A299998/2. - Hugo Pfoertner, Oct 01 2024

A299998 Decimal expansion of Sum_{k>=0} 1/2^(k*(k+1)/2).

Original entry on oeis.org

1, 6, 4, 1, 6, 3, 2, 5, 6, 0, 6, 5, 5, 1, 5, 3, 8, 6, 6, 2, 9, 3, 8, 4, 2, 7, 7, 0, 2, 2, 5, 4, 2, 9, 4, 3, 4, 2, 2, 6, 0, 6, 1, 5, 3, 7, 9, 5, 6, 7, 3, 9, 7, 4, 7, 8, 0, 4, 6, 5, 1, 6, 2, 2, 3, 8, 0, 1, 4, 4, 6, 0, 3, 7, 3, 3, 3, 5, 1, 7, 7, 5, 6, 0, 0, 3, 6, 4, 1, 7, 1, 6, 2, 3, 3, 5, 9
Offset: 1

Views

Author

M. F. Hasler, Feb 27 2018

Keywords

Comments

The binary expansion is the characteristic function A010054 of the triangular numbers A000217.

Examples

			1.641632560655153866293842770225429434226061537956739747804651622380144603733...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[QPochhammer[1/4, 1/4]/QPochhammer[2, 1/4], 10, 100][[1]] (* Amiram Eldar, Aug 13 2020 *)
  • PARI
    default(realprecision,200);suminf(k=0,2^(-k*(k+1)/2))

Formula

Equals 1 + A190405 (as a decimal number).
Equals Product{k>=1} (1 - 1/2^(2*k))/(1 - 1/2^(2*k-1)). - Amiram Eldar, Aug 13 2020

A076131 a(n) = 2^n*a(n-1) + 1, a(0) = 0.

Original entry on oeis.org

0, 1, 5, 41, 657, 21025, 1345601, 172236929, 44092653825, 22575438758401, 23117249288602625, 47344126543058176001, 193921542320366288900097, 1588605274688440638669594625, 26027708820495411423962638336001, 852875962629993641540407732994080769
Offset: 0

Views

Author

Kyle Hunter (hunterk(AT)raytheon.com), Oct 31 2002

Keywords

Comments

Base-2 expansion is same as base 10 expansion of A076127.

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := 2^n a[n - 1] + 1; Table[ a[n], {n, 0, 13}]
  • PARI
    a(n)=if(n<0,0,subst(Polrev(Vec(sum(k=1,n,x^(k*(k+1)/2)))),x,2))
    
  • PARI
    a(n)=if(n<1,0,1+a(n-1)*2^n)

Formula

a(n) = floor(c*2^((n+1)*(n+2)/2)) where c = sum(k>=1, 1/2^A000217(k))=0.6416325... - Benoit Cloitre, Nov 01 2002

Extensions

Edited and extended by Robert G. Wilson v, Oct 31 2002
Formula corrected by Vaclav Kotesovec, Aug 11 2012

A190407 Decimal expansion of Sum_{k>=1} (1/2)^A058331(k); based on a diagonal of the natural number array, A000027.

Original entry on oeis.org

1, 2, 6, 9, 5, 5, 0, 3, 2, 4, 6, 5, 0, 4, 8, 5, 7, 8, 4, 1, 6, 2, 5, 0, 5, 4, 3, 6, 3, 5, 7, 2, 5, 6, 7, 8, 8, 0, 6, 9, 6, 2, 1, 6, 8, 1, 9, 0, 1, 4, 6, 8, 0, 0, 2, 3, 1, 5, 0, 6, 1, 7, 8, 4, 9, 2, 5, 0, 9, 9, 2, 2, 7, 6, 2, 2, 7, 3, 0, 7, 5, 3, 8, 2, 1, 6, 5, 1, 3, 8, 3, 2, 3, 0, 9, 6, 1, 4, 3, 1, 3, 9, 1, 4, 3, 1, 4, 5, 8, 3, 2, 5, 4, 2, 1, 3, 0, 3, 3, 2
Offset: 0

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

See A190404.

Examples

			0.12695503246504857842...
		

Crossrefs

Programs

Formula

Equals Sum_{k>=1} (1/2)^V(k), where V=A058331 (1+2*k^2).

A319015 Decimal expansion of Sum_{k>=0} 1/2^(k^2).

Original entry on oeis.org

1, 5, 6, 4, 4, 6, 8, 4, 1, 3, 6, 0, 5, 9, 3, 8, 5, 7, 9, 3, 3, 4, 7, 2, 9, 2, 7, 4, 2, 7, 2, 4, 7, 5, 6, 6, 2, 3, 0, 6, 2, 5, 8, 2, 6, 9, 9, 7, 0, 4, 3, 9, 0, 4, 6, 4, 4, 4, 5, 0, 5, 5, 9, 6, 0, 2, 8, 4, 8, 0, 1, 3, 3, 1, 7, 9, 5, 7, 8, 4, 0, 6, 6, 5, 9, 1, 3, 0, 6, 4, 0, 1, 6, 2, 4, 6, 9, 1, 4, 8, 4, 4, 7, 4, 0, 2, 4, 7, 1, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 07 2018

Keywords

Comments

The binary expansion is the characteristic function of the squares (A010052).
This constant is transcendental (Nesterenko, 1996). - Amiram Eldar, Apr 30 2020

Examples

			1.5644684136059385793347... = (1.1001000010000001000000001...)_2.
                               | |  |    |      |        |
                               0 1  4    9     16       25
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(1 + EllipticTheta[3, 0, 1/2])/2, 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/2^(k^2)) \\ Michel Marcus, Sep 08 2018

Formula

Equals (1 + theta_3(1/2))/2, where theta_3 is the Jacobi theta function.
Equals 1 + Sum_{k>=1} lambda(k)/(2^k - 1), where lambda is the Liouville function (A008836). - Amiram Eldar, Apr 30 2020
Equals 1 + Sum_{k>=1} floor(sqrt(k))/2^(k+1) (Shamos, 2011, p. 4). - Amiram Eldar, Mar 12 2024

A319016 Decimal expansion of Sum_{k>=0} 1/2^(k*(k+1)).

Original entry on oeis.org

1, 2, 6, 5, 8, 7, 0, 0, 9, 5, 2, 3, 0, 8, 6, 6, 3, 6, 8, 4, 1, 8, 9, 2, 1, 3, 1, 4, 5, 4, 3, 5, 4, 3, 4, 2, 7, 4, 6, 4, 2, 6, 5, 4, 4, 6, 3, 9, 9, 6, 3, 8, 7, 1, 6, 8, 2, 0, 0, 5, 3, 3, 4, 1, 8, 1, 4, 8, 9, 3, 4, 9, 2, 5, 1, 1, 2, 7, 4, 8, 9, 4, 4, 3, 7, 0, 6, 4, 5, 9, 7, 4, 8, 3, 5, 3, 0, 5, 6, 7, 3, 9, 0, 8, 4, 2, 7, 1, 1, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 07 2018

Keywords

Comments

The binary expansion is the characteristic function of the oblong numbers (A005369).
The Engel expansion of this constant are the powers of 4 (A000302). - Amiram Eldar, Dec 07 2020

Examples

			1.2658700952308663684189... = (1.010001000001000000010000000001...)_2.
                               |  |   |     |       |         |
                               0  2   6    12      20        30
		

Crossrefs

Programs

  • Mathematica
    RealDigits[EllipticTheta[2, 0, 1/2]/2^(3/4), 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/2^(k*(k+1))) \\ Michel Marcus, Sep 08 2018

Formula

Equals theta_2(1/2)/2^(3/4), where theta_2 is the Jacobi theta function.
Equals Product_{k>=1} (1 - 1/4^k)^((-1)^k). - Antonio Graciá Llorente, Oct 01 2024

A332678 Decimal expansion of (1/2) * (1 + 2/1 + 4/(2*1) + 8/(4*2*1) + ... ).

Original entry on oeis.org

3, 1, 4, 1, 6, 3, 2, 5, 6, 0, 6, 5, 5, 1, 5, 3, 8, 6, 6, 2, 9, 3, 8, 4, 2, 7, 7, 0, 2, 2, 5, 4, 2, 9, 4, 3, 4, 2, 2, 6, 0, 6, 1, 5, 3, 7, 9, 5, 6, 7, 3, 9, 7, 4, 7, 8, 0, 4, 6, 5, 1, 6, 2, 2, 3, 8, 0, 1, 4, 4, 6, 0, 3, 7, 3, 3, 3, 5, 1, 7, 7, 5, 6, 0, 0, 3, 6, 4, 1, 7, 1, 6, 2, 3, 3, 5, 9, 1, 3, 3, 0, 8, 6
Offset: 1

Views

Author

Drew Edgette, Feb 19 2020

Keywords

Comments

An approximation to Pi.

Examples

			3.1416325606551538662938427702254294342260615379567...
		

Crossrefs

Cf. A000796 (Pi), A013705.

Programs

  • Maple
    c:= sum(2^(j*(3-j)/2-1), j=0..infinity):
    evalf(c, 125);  # Alois P. Heinz, Mar 03 2020
  • PARI
    suminf(k=0, 2^(k-binomial(k,2)-1)) \\ Andrew Howroyd, Feb 21 2020

Formula

Equals (1/2)*Sum_{k>=0} 2^(k-binomial(k,2)). - Andrew Howroyd, Feb 21 2020
Equals A190405 +2.5 = A299998 +1.5. All digits the same but the first one or two. - R. J. Mathar, Mar 10 2020
Showing 1-7 of 7 results.