cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A006125 a(n) = 2^(n*(n-1)/2).

Original entry on oeis.org

1, 1, 2, 8, 64, 1024, 32768, 2097152, 268435456, 68719476736, 35184372088832, 36028797018963968, 73786976294838206464, 302231454903657293676544, 2475880078570760549798248448, 40564819207303340847894502572032, 1329227995784915872903807060280344576
Offset: 0

Views

Author

Keywords

Comments

Number of graphs on n labeled nodes; also number of outcomes of labeled n-team round-robin tournaments.
Number of perfect matchings of order n Aztec diamond. [see Speyer]
Number of Gelfand-Zeitlin patterns with bottom row [1,2,3,...,n]. [Zeilberger]
For n >= 1 a(n) is the size of the Sylow 2-subgroup of the Chevalley group A_n(2) (sequence A002884). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001
From James Propp: (Start)
a(n) is the number of ways to tile the region
o-----o
|.....|
o--o.....o--o
|...........|
o--o...........o--o
|.................|
o--o.................o--o
|.......................|
|.......................|
|.......................|
o--o.................o--o
|.................|
o--o...........o--o
|...........|
o--o.....o--o
|.....|
o-----o
(top-to-bottom distance = 2n) with dominoes like either of
o--o o-----o
|..| or |.....|
|..| o-----o
|..|
o--o
(End)
The number of domino tilings in A006253, A004003, A006125 is the number of perfect matchings in the relevant graphs. There are results of Jockusch and Ciucu that if a planar graph has a rotational symmetry then the number of perfect matchings is a square or twice a square - this applies to these 3 sequences. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 12 2001
Let M_n denotes the n X n matrix with M_n(i,j)=binomial(2i,j); then det(M_n)=a(n+1). - Benoit Cloitre, Apr 21 2002
Smallest power of 2 which can be expressed as the product of n distinct numbers (powers of 2), e.g., a(4) = 1024 = 2*4*8*16. Also smallest number which can be expressed as the product of n distinct powers. - Amarnath Murthy, Nov 10 2002
The number of binary relations that are both reflexive and symmetric on an n-element set. - Justin Witt (justinmwitt(AT)gmail.com), Jul 12 2005
The number of symmetric binary relations on an (n-1)-element set. - Peter Kagey, Feb 13 2021
To win a game, you must flip n+1 heads in a row, where n is the total number of tails flipped so far. Then the probability of winning for the first time after n tails is A005329 / A006125. The probability of having won before n+1 tails is A114604 / A006125. - Joshua Zucker, Dec 14 2005
a(n) = A126883(n-1)+1. - Zerinvary Lajos, Jun 12 2007
Equals right border of triangle A158474 (unsigned). - Gary W. Adamson, Mar 20 2009
a(n-1) is the number of simple labeled graphs on n nodes such that every node has even degree. - Geoffrey Critzer, Oct 21 2011
a(n+1) is the number of symmetric binary matrices of size n X n. - Nathan J. Russell, Aug 30 2014
Let T_n be the n X n matrix with T_n(i,j) = binomial(2i + j - 3, j-1); then det(T_n) = a(n). - Tony Foster III, Aug 30 2018
k^(n*(n-1)/2) is the determinant of n X n matrix T_(i,j) = binomial(k*i + j - 3, j-1), in this case k=2. - Tony Foster III, May 12 2019
Let B_n be the n+1 X n+1 matrix with B_n(i, j) = Sum_{m=max(0, j-i)..min(j, n-i)} (binomial(i, j-m) * binomial(n-i, m) * (-1)^m), 0<=i,j<=n. Then det B_n = a(n+1). Also, deleting the first row and any column from B_n results in a matrix with determinant a(n). The matrices B_n have the following property: B_n * [x^n, x^(n-1) * y, x^(n-2) * y^2, ..., y^n]^T = [(x-y)^n, (x-y)^(n-1) * (x+y), (x-y)^(n-2) * (x+y)^2, ..., (x+y)^n]^T. - Nicolas Nagel, Jul 02 2019
a(n) is the number of positive definite (-1,1)-matrices of size n X n. - Eric W. Weisstein, Jan 03 2021
a(n) is the number of binary relations on a labeled n-set that are both total and antisymmetric. - José E. Solsona, Feb 05 2023

Examples

			From _Gus Wiseman_, Feb 11 2021: (Start)
This sequence counts labeled graphs on n vertices. For example, the a(0) = 1 through a(2) = 8 graph edge sets are:
  {}  {}  {}    {}
          {12}  {12}
                {13}
                {23}
                {12,13}
                {12,23}
                {13,23}
                {12,13,23}
This sequence also counts labeled graphs with loops on n - 1 vertices. For example, the a(1) = 1 through a(3) = 8 edge sets are the following. A loop is represented as an edge with two equal vertices.
  {}  {}    {}
      {11}  {11}
            {12}
            {22}
            {11,12}
            {11,22}
            {12,22}
            {11,12,22}
(End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 547 (Fig. 9.7), 573.
  • G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 178.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 178.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 3, Eq. (1.1.2).
  • J. Propp, Enumeration of matchings: problems and progress, in: New perspectives in geometric combinatorics, L. Billera et al., eds., Mathematical Sciences Research Institute series, vol. 38, Cambridge University Press, 1999.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000568 for the unlabeled analog, A053763, A006253, A004003.
Cf. A001187 (connected labeled graphs).
Cf. A158474. - Gary W. Adamson, Mar 20 2009
Cf. A136652 (log). - Paul D. Hanna, Dec 04 2009
The unlabeled version is A000088, or A002494 without isolated vertices.
The directed version is A002416.
The covering case is A006129.
The version for hypergraphs is A058891, or A016031 without singletons.
Row sums of A143543.
The case of connected edge set is A287689.

Programs

Formula

Sequence is given by the Hankel transform of A001003 (Schroeder's numbers) = 1, 1, 3, 11, 45, 197, 903, ...; example: det([1, 1, 3, 11; 1, 3, 11, 45; 3, 11, 45, 197; 11, 45, 197, 903]) = 2^6 = 64. - Philippe Deléham, Mar 02 2004
a(n) = 2^floor(n^2/2)/2^floor(n/2). - Paul Barry, Oct 04 2004
G.f. satisfies: A(x) = 1 + x*A(2x). - Paul D. Hanna, Dec 04 2009
a(n) = 2 * a(n-1)^2 / a(n-2). - Michael Somos, Dec 30 2012
G.f.: G(0)/x - 1/x, where G(k) = 1 + 2^(k-1)*x/(1 - 1/(1 + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2013
E.g.f. satisfies A'(x) = A(2x). - Geoffrey Critzer, Sep 07 2013
Sum_{n>=1} 1/a(n) = A299998. - Amiram Eldar, Oct 27 2020
a(n) = s_lambda(1,1,...,1) where s is the Schur polynomial in n variables and lambda is the partition (n,n-1,n-2,...,1). - Leonid Bedratyuk, Feb 06 2022
a(n) = Product_{1 <= j <= i <= n-1} (i + j)/(2*i - 2*j + 1). Cf. A007685. - Peter Bala, Oct 25 2024

Extensions

More terms from Vladeta Jovovic, Apr 09 2000

A190404 Decimal expansion of (1/2)(1 + Sum_{k>=1} (1/2)^T(k)), where T=A000217 (triangular numbers); based on row 1 of the natural number array, A000027.

Original entry on oeis.org

8, 2, 0, 8, 1, 6, 2, 8, 0, 3, 2, 7, 5, 7, 6, 9, 3, 3, 1, 4, 6, 9, 2, 1, 3, 8, 5, 1, 1, 2, 7, 1, 4, 7, 1, 7, 1, 1, 3, 0, 3, 0, 7, 6, 8, 9, 7, 8, 3, 6, 9, 8, 7, 3, 9, 0, 2, 3, 2, 5, 8, 1, 1, 1, 9, 0, 0, 7, 2, 3, 0, 1, 8, 6, 6, 6, 7, 5, 8, 8, 7, 8, 0, 0, 1, 8, 2, 0, 8, 5, 8, 1, 1, 6, 7, 9, 5, 6, 6, 5, 4, 3, 0, 4, 4, 8, 6, 7, 6, 5, 8, 1, 7, 1, 8, 0, 9, 7, 3, 0
Offset: 0

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

Suppose that F={f(i,j): i>=1, j>=1} is an array of positive integers such that every positive integer occurs exactly once in F.
Let G=G(F) denote the array defined by g(i,j)=(1/2)^f(i,j);
R(i)=Sum_{j>=1} g(i,j); i-th row sum of G;
C(j)=Sum_{i>=1} g(i,j); j-th column sum of G;
U(j)=Sum_{i>=1} g(i,i+j-1); j-th upper diagonal sum of G;
L(i)=Sum_{j>=1} g(i+j,j); i-th lower diagonal sum of G;
R(odds)=Sum_{i>=1} R(2i-1); sum, odd numbered rows of G;
R(evens)=Sum_{i>=1} R(2i); sum, even numbered rows of G;
C(odds)=Sum_{j>=1} R(2j-1); sum, odd numbered cols of G;
C(evens)=Sum_{j>=1} R(2j); sum, even numbered cols of G;
UT=Sum_{j>=1} U(j); sum, upper triangular subarray of G;
LT=Sum_{i>=1} L(i); sum, lower triangular subarray of G.
...
Note that R(odds)+R(evens)=C(odds)+C(evens)=UT+LT=1.
...
For the natural number array F=A000027:
R(1)=0.820816280327576933146921385113... (A190404)
R(2)=0.160408140163788466573460692556...
R(3)=0.0177040700818942332867303462782...
R(4)=0.00103953504094711664336517313909...
R(5)=0.0000314862704735583216825865695447...
...
R(odds)=0.838551840434481240061632331355800... (A190408)
R(evens)=0.161448159565518759938367668644199...(A190409)
...
C(1)=0.64163256065515386629... (A190405)
C(2)=0.28326512131030773259...
C(3)=0.066530242620615465175...
C(4)=0.0080604852412309303507...
C(5)=0.00049597048246186070148...
...
C(odds)=0.7086590131172367153696485920526...(A190410)
C(evens)=0.29134098688276328463035140794... (A190411)
...
D(1)=0.53137210011527713548... (A190406)
D(2)=0.25391006493009715683...
D(3)=0.062744200230554270960...
D(4)=0.0078201298601943136650...
D(5)=0.00048840046110854191952...
...
E(1)=0.12695503246504857842... (A190407)
E(2)=0.015686050057638567740...
E(3)=0.00097751623252428920813...
E(4)=0.000030525028819283869970...
E(5)=0.00000047686626214460406264...
...
UT=0.8563503956097795739814618239914245448... (A190412)
LT=0.1436496043902204260185381760085754551... (A190415)

Examples

			0.820816280327576933146921385113...
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := i + (j + i - 2)(j + i - 1)/2;
    TableForm[Table[f[i,j],{i,1,10},{j,1,10}]] (* A000027 *)
    r[i_] := Sum[2^-f[i, j], {j,1,400}];    (* C(row i) *)
    c[j_] := Sum[2^-f[i,j], {i,1,400}];     (* C(col j) *)
    d[h_] := Sum[2^-f[i,i+h-1], {i,1,200}]; (* C(udiag h) *)
    e[h_] := Sum[2^-f[i+h,i], {i,1,200}];   (* C(ldiag h) *)
    RealDigits[r[1], 10, 120, -1]  (* A190404 *)
    N[r[1], 30]
    N[r[2], 30]
    N[r[3], 30]
    N[r[4], 30]
    N[r[5], 30]
    N[r[6], 30]
    RealDigits[c[1], 10, 120, -1] (* A190405 *)
    N[c[1], 20]
    N[c[2], 20]
    N[c[3], 20]
    N[c[4], 20]
    N[c[5], 20]
    N[c[6], 20]
    RealDigits[d[1], 10, 20, -1] (* A190406 *)
    N[d[1], 20]
    N[d[2], 20]
    N[d[3], 20]
    N[d[4], 20]
    N[d[5], 20]
    N[d[6], 20]
    RealDigits[e[1], 10, 20, -1] (* A190407 *)
    N[e[1], 20]
    N[e[2], 20]
    N[e[3], 20]
    N[e[4], 20]
    N[e[5], 20]
    N[e[6], 20]
  • Sage
    def A190404(b):  # Generate the constant with b bits of precision
        return N(sum([(1/2)^(1+j*(j+1)/2) for j in range(1,b)])+1/2,b)
    A190404(409) # Danny Rorabaugh, Mar 25 2015

Formula

A190404: (1/2)(1 + Sum_{k>=1} (1/2)^T(k)), where T=A000217 (triangular numbers).
A190405: Sum_{k>=1} (1/2)^T(k), where T=A000217.
A190406: Sum_{k>=1} (1/2)^S(k-1), where S=A001844 (centered square numbers).
A190407: Sum_{k>=1} (1/2)^V(k), where V=A058331 (1+2*k^2).
Equals Product_{k>=1} 1 - 1/(2^(2*k + 1) - 1). - Antonio Graciá Llorente, Oct 01 2024
Equals A299998/2. - Hugo Pfoertner, Oct 01 2024

A073587 a(n) = a(n-1)*2^n + 1 where a(0)=1.

Original entry on oeis.org

1, 3, 13, 105, 1681, 53793, 3442753, 440672385, 112812130561, 57759810847233, 59146046307566593, 121131102837896382465, 496152997224023582576641, 4064485353259201188467843073, 66592528027798752271857140908033, 2182103958414909514444214793274425345
Offset: 0

Views

Author

Felice Russo, Aug 28 2002

Keywords

Comments

Also, number of nodes in an n-ary tree with increasing fanout as the level increases. - Dhruv Matani, Apr 12 2012

Crossrefs

Cf. A000225 (nodes in a binary tree).

Programs

  • Mathematica
    a = 1; Table[a = a*2^n + 1, {n, 14}] (* Jayanta Basu, Jul 02 2013 *)
  • UBASIC
    25 A=1
    30 for I=1 to 20
    40 A=A*2^I+1
    50 print A
    60 next
    70 end

Formula

a(n) = floor(D*2^(n*(n+1)/2)) where D is a constant, D=1.64163256065515386629... = Sum_{k>=0} 1/2^(k(k+1)/2) = A299998. - Benoit Cloitre, Sep 01 2002

Extensions

Added a(0)=1. Added information from duplicate sequence A182104. - N. J. A. Sloane, Dec 28 2015

A319015 Decimal expansion of Sum_{k>=0} 1/2^(k^2).

Original entry on oeis.org

1, 5, 6, 4, 4, 6, 8, 4, 1, 3, 6, 0, 5, 9, 3, 8, 5, 7, 9, 3, 3, 4, 7, 2, 9, 2, 7, 4, 2, 7, 2, 4, 7, 5, 6, 6, 2, 3, 0, 6, 2, 5, 8, 2, 6, 9, 9, 7, 0, 4, 3, 9, 0, 4, 6, 4, 4, 4, 5, 0, 5, 5, 9, 6, 0, 2, 8, 4, 8, 0, 1, 3, 3, 1, 7, 9, 5, 7, 8, 4, 0, 6, 6, 5, 9, 1, 3, 0, 6, 4, 0, 1, 6, 2, 4, 6, 9, 1, 4, 8, 4, 4, 7, 4, 0, 2, 4, 7, 1, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 07 2018

Keywords

Comments

The binary expansion is the characteristic function of the squares (A010052).
This constant is transcendental (Nesterenko, 1996). - Amiram Eldar, Apr 30 2020

Examples

			1.5644684136059385793347... = (1.1001000010000001000000001...)_2.
                               | |  |    |      |        |
                               0 1  4    9     16       25
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(1 + EllipticTheta[3, 0, 1/2])/2, 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/2^(k^2)) \\ Michel Marcus, Sep 08 2018

Formula

Equals (1 + theta_3(1/2))/2, where theta_3 is the Jacobi theta function.
Equals 1 + Sum_{k>=1} lambda(k)/(2^k - 1), where lambda is the Liouville function (A008836). - Amiram Eldar, Apr 30 2020
Equals 1 + Sum_{k>=1} floor(sqrt(k))/2^(k+1) (Shamos, 2011, p. 4). - Amiram Eldar, Mar 12 2024

A319016 Decimal expansion of Sum_{k>=0} 1/2^(k*(k+1)).

Original entry on oeis.org

1, 2, 6, 5, 8, 7, 0, 0, 9, 5, 2, 3, 0, 8, 6, 6, 3, 6, 8, 4, 1, 8, 9, 2, 1, 3, 1, 4, 5, 4, 3, 5, 4, 3, 4, 2, 7, 4, 6, 4, 2, 6, 5, 4, 4, 6, 3, 9, 9, 6, 3, 8, 7, 1, 6, 8, 2, 0, 0, 5, 3, 3, 4, 1, 8, 1, 4, 8, 9, 3, 4, 9, 2, 5, 1, 1, 2, 7, 4, 8, 9, 4, 4, 3, 7, 0, 6, 4, 5, 9, 7, 4, 8, 3, 5, 3, 0, 5, 6, 7, 3, 9, 0, 8, 4, 2, 7, 1, 1, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 07 2018

Keywords

Comments

The binary expansion is the characteristic function of the oblong numbers (A005369).
The Engel expansion of this constant are the powers of 4 (A000302). - Amiram Eldar, Dec 07 2020

Examples

			1.2658700952308663684189... = (1.010001000001000000010000000001...)_2.
                               |  |   |     |       |         |
                               0  2   6    12      20        30
		

Crossrefs

Programs

  • Mathematica
    RealDigits[EllipticTheta[2, 0, 1/2]/2^(3/4), 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/2^(k*(k+1))) \\ Michel Marcus, Sep 08 2018

Formula

Equals theta_2(1/2)/2^(3/4), where theta_2 is the Jacobi theta function.
Equals Product_{k>=1} (1 - 1/4^k)^((-1)^k). - Antonio Graciá Llorente, Oct 01 2024

A333797 Total number of saturated chains in the lattices L_n(2) of subspaces (ordered by inclusion) of the vector space GF(2)^n.

Original entry on oeis.org

1, 3, 14, 114, 1777, 55461, 3496868, 444131448, 113253936439, 57872769803787, 59203843739029706, 121190268142727296926, 496274148044956457612893, 4064981546636275903297015089, 66596592678542112197488335080432, 2182170552297789390998576752287351492
Offset: 0

Views

Author

Geoffrey Critzer, Apr 05 2020

Keywords

Comments

These are the chains counted in A293844 that are saturated. A chain C in poset P is saturated if there is no z in P - C such that x < z < y for some x,y in C and such that C union {z} is a chain.

Crossrefs

Programs

  • Mathematica
    nn = 15; eq[z_] :=Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];
    Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0, nn}] CoefficientList[Series[eq[z]^2/(1 - z) /. q -> 2, {z, 0, nn}], z]

Formula

a(n)/A005329(n) is the coefficient of x^n in eq(x)^2/(1 - x) where eq(x) is the q-exponential function.
a(n) ~ A299998 * 2^(n*(n+1)/2). - Vaclav Kotesovec, Apr 07 2020

A332678 Decimal expansion of (1/2) * (1 + 2/1 + 4/(2*1) + 8/(4*2*1) + ... ).

Original entry on oeis.org

3, 1, 4, 1, 6, 3, 2, 5, 6, 0, 6, 5, 5, 1, 5, 3, 8, 6, 6, 2, 9, 3, 8, 4, 2, 7, 7, 0, 2, 2, 5, 4, 2, 9, 4, 3, 4, 2, 2, 6, 0, 6, 1, 5, 3, 7, 9, 5, 6, 7, 3, 9, 7, 4, 7, 8, 0, 4, 6, 5, 1, 6, 2, 2, 3, 8, 0, 1, 4, 4, 6, 0, 3, 7, 3, 3, 3, 5, 1, 7, 7, 5, 6, 0, 0, 3, 6, 4, 1, 7, 1, 6, 2, 3, 3, 5, 9, 1, 3, 3, 0, 8, 6
Offset: 1

Views

Author

Drew Edgette, Feb 19 2020

Keywords

Comments

An approximation to Pi.

Examples

			3.1416325606551538662938427702254294342260615379567...
		

Crossrefs

Cf. A000796 (Pi), A013705.

Programs

  • Maple
    c:= sum(2^(j*(3-j)/2-1), j=0..infinity):
    evalf(c, 125);  # Alois P. Heinz, Mar 03 2020
  • PARI
    suminf(k=0, 2^(k-binomial(k,2)-1)) \\ Andrew Howroyd, Feb 21 2020

Formula

Equals (1/2)*Sum_{k>=0} 2^(k-binomial(k,2)). - Andrew Howroyd, Feb 21 2020
Equals A190405 +2.5 = A299998 +1.5. All digits the same but the first one or two. - R. J. Mathar, Mar 10 2020
Showing 1-7 of 7 results.