cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A190442 Positions of 1 in A190440.

Original entry on oeis.org

4, 7, 12, 15, 20, 25, 28, 33, 38, 41, 46, 49, 54, 59, 62, 67, 70, 72, 75, 80, 83, 88, 93, 96, 101, 104, 109, 114, 117, 122, 125, 127, 130, 135, 138, 143, 148, 151, 156, 159, 164, 169, 172, 177, 182, 185, 190, 193, 198, 203, 206, 211, 214, 216, 219, 224, 227, 232, 237, 240, 245, 248, 253, 258, 261, 266, 269, 271, 274, 279, 282, 287, 292, 295, 300
Offset: 1

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

See A190440.

Crossrefs

Cf. A190440.

Programs

A190443 Positions of 2 in A190440.

Original entry on oeis.org

1, 6, 9, 14, 17, 19, 22, 27, 30, 35, 40, 43, 48, 51, 56, 61, 64, 69, 74, 77, 82, 85, 90, 95, 98, 103, 106, 108, 111, 116, 119, 124, 129, 132, 137, 140, 145, 150, 153, 158, 161, 163, 166, 171, 174, 179, 184, 187, 192, 195, 200, 205, 208, 213, 218, 221, 226, 229, 234, 239, 242, 247, 250, 252, 255, 260, 263, 268, 273, 276, 281, 284, 289, 294, 297
Offset: 1

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

See A190440.

Crossrefs

Cf. A190440.

Programs

A190248 a(n) = [nu+nv+nw]-[nu]-[nv]-[nw], where u=(1+sqrt(5))/2, v=u^2, w=u^3, []=floor.

Original entry on oeis.org

1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 1
Offset: 1

Views

Author

Clark Kimberling, May 06 2011

Keywords

Comments

a(n) = A190440(n) - A078588(n). This follows from substituting w = 1+2u, v = 1+u, and taking 2n, n and n out of the floor functions. - Michel Dekking, Oct 21 2016

Crossrefs

Programs

  • Magma
    [Floor(2*n*(2+Sqrt(5))) - Floor(n*(1+Sqrt(5))/2) - Floor(n*(3 + Sqrt(5))/2): n in [1..30]]; // G. C. Greubel, Dec 26 2017
  • Mathematica
    u = GoldenRatio; v = u^2; w=u^3;
    f[n_] := Floor[n*u + n*v + n*w] - Floor[n*u] - Floor[n*v] - Floor[n*w]
    t = Table[f[n], {n, 1, 120}] (* A190248 *)
    Flatten[Position[t, 0]]      (* A190249 *)
    Flatten[Position[t, 1]]      (* A190250 *)
    Flatten[Position[t, 2]]      (* A190251 *)
  • PARI
    for(n=1,30, print1(floor(2*n*(2+sqrt(5))) - floor(n*(1+sqrt(5))/2) - floor(n*(3 + sqrt(5))/2) - floor(n*(2 + sqrt(5))), ", ")) \\ G. C. Greubel, Dec 26 2017
    

Formula

a(n) = [2n+4nu]-[nu]-[n+nu]-[n+2nu], where u=(1+sqrt(5))/2. - Michel Dekking, Oct 21 2016

Extensions

Name corrected by Michel Dekking, Oct 21 2016

A190436 a(n) = [(b*n+c)*r] - b*[n*r] - [c*r], where (r,b,c)=(golden ratio,3,2) and []=floor.

Original entry on oeis.org

2, 0, 2, 1, 0, 2, 1, 3, 1, 0, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 3, 2, 0, 2, 1, 0, 2, 1, 3, 1, 0, 2, 1, 0, 2, 0, 2, 1, 0, 2, 1, 3, 1, 0, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 3, 2, 0, 2, 1, 0, 2, 1, 3, 1, 0, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 3, 2, 0, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 0, 2, 0, 2, 1, 0, 2, 1, 3, 1, 0, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 3, 2, 0, 2, 1, 0
Offset: 1

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
Examples:
(golden ratio,2,0): A078588, A005653, A005652
(golden ratio,2,1): A190427 - A190430
(golden ratio,3,0): A140397 - A190400
(golden ratio,3,1): A140431 - A190435
(golden ratio,3,2): A140436 - A190439
(golden ratio,4,c): A140440 - A190461

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio; b = 3; c = 2;
    f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
    t = Table[f[n], {n, 1, 320}]
    Flatten[Position[t, 0]] (* A190437 *)
    Flatten[Position[t, 1]] (* A190438 *)
    Flatten[Position[t, 2]] (* A190439 *)
    Flatten[Position[t, 3]] (* A302253 *)

A190445 [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(golden ratio,4,1) and []=floor.

Original entry on oeis.org

3, 1, 4, 2, 0, 3, 1, 4, 2, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 2, 4, 3, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 1, 4, 2, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 2, 4, 3, 1, 4, 2, 0, 3, 1, 4, 2, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 2, 4, 2, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 2, 0, 3, 1, 4, 2, 0, 3, 1, 4, 2, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 2, 4, 3, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 1, 4, 2, 1, 3, 2, 0
Offset: 1

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
Examples:
(golden ratio,2,0): A078588, A005653, A005652
(golden ratio,2,1): A190427-A190430
(golden ratio,3,0): A140397-A190400
(golden ratio,3,1): A140431-A190435
(golden ratio,3,2): A140436-A190439
(golden ratio,4,c): A190440-A190461

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio; b = 4; c = 1;
    f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
    t = Table[f[n], {n, 1, 320}]
    Flatten[Position[t, 0]]
    Flatten[Position[t, 1]]
    Flatten[Position[t, 2]]
    Flatten[Position[t, 3]]
    Flatten[Position[t, 4]]

A190457 a(n) = [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(golden ratio,4,3) and []=floor.

Original entry on oeis.org

3, 1, 4, 2, 1, 3, 2, 4, 3, 1, 4, 2, 0, 3, 1, 4, 2, 1, 3, 2, 4, 3, 1, 4, 2, 1, 3, 2, 4, 3, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 2, 4, 3, 1, 4, 2, 1, 3, 1, 4, 2, 1, 3, 2, 4, 3, 1, 4, 2, 1, 3, 2, 4, 3, 1, 4, 2, 0, 3, 1, 4, 2, 1, 3, 2, 4, 3, 1, 4, 2, 1, 3, 2, 4, 2, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 2, 4, 3, 1, 4, 2, 1, 3, 1, 4, 2, 1, 3, 2, 4, 3, 1, 4, 2, 1, 3, 2, 4, 3, 1, 3, 2, 0, 3, 1, 4, 2, 1, 3, 2, 4, 3
Offset: 1

Views

Author

Clark Kimberling, May 10 2011

Keywords

Comments

Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
Examples:
(golden ratio,2,0): A078588, A005653, A005652
(golden ratio,2,1): A190427-A190430
(golden ratio,3,0): A140397-A190400
(golden ratio,3,1): A140431-A190435
(golden ratio,3,2): A140436-A190439
(golden ratio,4,c): A190440-A190461

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio; b = 4; c = 3;
    f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
    t = Table[f[n], {n, 1, 320}]
    Flatten[Position[t, 0]]
    Flatten[Position[t, 1]]
    Flatten[Position[t, 2]]
    Flatten[Position[t, 3]]
    Flatten[Position[t, 4]]
Showing 1-6 of 6 results.