A334370
Expansion of e.g.f. Product_{k>=1} (1 + x^prime(k) / prime(k)!).
Original entry on oeis.org
1, 0, 1, 1, 0, 11, 0, 22, 56, 36, 2640, 1, 8712, 79, 72436, 360465, 48608, 49008961, 794376, 4232764, 7753140, 942565890, 18198334, 14799637777, 10577976, 366619314900, 2785137222400, 1475339135400, 1065920156634060, 3765722000041, 5869315258699050
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+
(p-> `if`(p>n, 0, b(n-p, i-1)*binomial(n, p)))(ithprime(i))))
end:
a:= n-> b(n, numtheory[pi](n)):
seq(a(n), n=0..30); # Alois P. Heinz, Jul 18 2023
-
nmax = 30; CoefficientList[Series[Product[(1 + x^Prime[k]/Prime[k]!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[DivisorSum[k, -#/(-#!)^(k/#) &, PrimeQ[#] &] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 30}]
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, 1+isprime(k)*x^k/k!))) \\ Seiichi Manyama, Feb 27 2022
A305618
Expansion of e.g.f. log(1 + Sum_{k>=1} x^prime(k)/prime(k)!).
Original entry on oeis.org
0, 1, 1, -3, -9, 20, 190, -126, -6280, -10326, 293041, 1519320, -16985045, -194560444, 1013712777, 27317463952, -19210030599, -4305097718760, -17733269020226, 743855089334604, 7868686621862292, -132351392654695270, -2854492900112993039, 20150897206881256464
Offset: 1
E.g.f.: A(x) = x^2/2! + x^3/3! - 3*x^4/4! - 9*x^5/5! + 20*x^6/6! + ...
exp(A(x)) = 1 + x^2/2! + x^3/3! + x^5/5! + x^7/7! + ... + x^A000040(k)/A039716(k) + ...
exp(exp(A(x))-1) = 1 + x^2/2! + x^3/3! + 3*x^4/4! + 11*x^5/5! + ... + A190476(k)*x^k/k! + ...
-
a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n)-add(a(j)*t(n-j)*
j*binomial(n, j), j=1..n-1)/n))(i-> `if`(isprime(i), 1, 0))
end:
seq(a(n), n=1..25); # Alois P. Heinz, Dec 04 2018
-
nmax = 24; Rest[CoefficientList[Series[Log[1 + Sum[x^Prime[k]/Prime[k]!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!]
a[n_] := a[n] = Boole[PrimeQ[n]] - Sum[k Binomial[n, k] Boole[PrimeQ[n - k]] a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 24}]
A364450
Number of partitions of [n] without prime sized blocks.
Original entry on oeis.org
1, 1, 1, 1, 2, 6, 17, 43, 135, 536, 2262, 9109, 40119, 198069, 1057149, 5656915, 31937212, 191032078, 1218669125, 7948119483, 54117500635, 381631039690, 2828205076600, 21507011811289, 169880627954541, 1377653319819302, 11620433411120653, 100417638302823210
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
isprime(j), 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..30);
A347948
E.g.f.: 1 / (1 - Sum_{k>=1} x^prime(k) / prime(k)!).
Original entry on oeis.org
1, 0, 1, 1, 6, 21, 110, 673, 4312, 34260, 280212, 2648581, 26580840, 292468333, 3453838544, 43672689816, 590203920256, 8458029201433, 128528293405392, 2059731511022935, 34762308371221224, 615898019175914166, 11432263502365894916, 221855824404176472115
Offset: 0
-
nmax = 23; CoefficientList[Series[1/(1 - Sum[x^Prime[k]/Prime[k]!, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Boole[PrimeQ[k]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
A353163
Expansion of e.g.f. exp(Sum_{p prime} x^p / (p-1)!).
Original entry on oeis.org
1, 0, 2, 3, 12, 65, 210, 1477, 7560, 45864, 338310, 2176031, 17657640, 139280869, 1150004856, 10572694860, 94834041120, 931995595457, 9384294360168, 96974005210273, 1066116104926500, 11838081891521760, 137785102884102366, 1652584041236345933
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, isprime(k)*x^k/(k-1)!))))
-
a(n) = if(n==0, 1, sum(k=1, n, isprime(k)*k*binomial(n-1, k-1)*a(n-k)));
A329261
Expansion of e.g.f. -log(1 - Sum_{k>=1} x^prime(k) / prime(k)!).
Original entry on oeis.org
0, 0, 1, 1, 3, 11, 40, 232, 1246, 8912, 65766, 561001, 5198424, 52513111, 577791292, 6806860347, 86303601008, 1163845620633, 16701819148776, 253608108810052, 4065574363467636, 68608467057149112, 1215544196988580438, 22564088376584800717
Offset: 0
-
nmax = 23; CoefficientList[Series[-Log[1 - Sum[x^Prime[k]/Prime[k]!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Boole[PrimeQ[n]] + Sum[Binomial[n, k] Boole[PrimeQ[n - k]] k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 23}]
A351940
a(n) is the number of partitions of the set {1,2,...,n} into lists having a prime number of elements.
Original entry on oeis.org
1, 0, 2, 6, 12, 240, 480, 12600, 62160, 665280, 10009440, 94802400, 1497545280, 23662679040, 317854817280, 5236146115200, 102522189369600, 1772579589580800, 39459091697625600, 809304973699622400, 17463916757211724800, 388537548150495744000
Offset: 0
a(2) = 2 : (12) (2! * 1 ways).
a(3) = 6 : (123) (3! * 1 ways).
a(4) = 12 : (12)(34) (2! * 2! * 3 ways).
a(5) = 240 : (12345) (5! * 1 ways), (123)(45) (3! * 2! * 10 ways).
a(6) = 480 : (123)(456) (3! * 3! * 10 ways), (12)(34)(56) (2! * 2! * 2! * 15 ways).
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, isprime(k)*x^k))))
-
a(n) = if(n==0, 1, sum(k=1, n, isprime(k)*k!*binomial(n-1, k-1)*a(n-k)));
A365107
Sum_{n>=0} a(n) * x^n / n!^2 = exp( Sum_{n>=1} x^prime(n) / prime(n)!^2 ).
Original entry on oeis.org
1, 0, 1, 1, 18, 101, 1550, 22492, 424536, 10283064, 272319552, 8959493401, 328044534576, 13799304374077, 657306569855728, 34694458662034731, 2048559070407831424, 132868259271772801185, 9463476338179250300352, 736376651361995115417850, 62178423492630241909006224, 5689134205956573233701281462
Offset: 0
-
nmax = 21; CoefficientList[Series[Exp[Sum[x^Prime[k]/Prime[k]!^2, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!^2
a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, Prime[k]]^2 Prime[k] a[n - Prime[k]], {k, 1, PrimePi[n]}]; Table[a[n], {n, 0, 21}]
Showing 1-8 of 8 results.
Comments