A190541 a(n) = 7^n - 3^n.
0, 4, 40, 316, 2320, 16564, 116920, 821356, 5758240, 40333924, 282416200, 1977149596, 13840755760, 96887416084, 678218289880, 4747547161036, 33232887522880, 232630384847044, 1628413210489960, 11398894023111676, 79792262810827600, 558545853622930804, 3909821017201928440
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (10,-21).
Programs
-
Magma
[7^n - 3^n: n in [0..30]];
-
Maple
A190541:=n->7^n-3^n: seq(A190541(n), n=0..25); # Wesley Ivan Hurt, Oct 04 2014
-
Mathematica
Table[7^n - 3^n, {n, 0, 25}] (* or *) CoefficientList[Series[4 x /((1 - 3 x) (1 - 7 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 04 2014 *) LinearRecurrence[{10,-21},{0,4},20] (* Harvey P. Dale, Mar 30 2015 *)
-
PARI
a(n)=7^n-3^n \\ Charles R Greathouse IV, Jun 02 2011
Formula
a(n) = 10*a(n-1) - 21*a(n-2).
G.f.: 4*x/((1-3*x)*(1-7*x)). - Vincenzo Librandi, Oct 04 2014
E.g.f.: 2*exp(5*x)*sinh(2*x). - Elmo R. Oliveira, Mar 31 2025
a(n) = 4*A016138(n-1). - R. J. Mathar, Jun 07 2025
Comments