A190543 a(n) = 8^n - 3^n.
0, 5, 55, 485, 4015, 32525, 261415, 2094965, 16770655, 134198045, 1073682775, 8589757445, 68718945295, 549754219565, 4398041728135, 35184357739925, 281474933663935, 2251799684545085, 18014398122061495, 144115186913594405, 1152921501120062575, 9223372026394422605
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- Index entries for linear recurrences with constant coefficients, signature (11,-24).
Programs
-
Magma
[8^n - 3^n: n in [0..30]];
-
Maple
A190543:=n->8^n - 3^n; seq(A190543(n), n=0..20); # Wesley Ivan Hurt, Feb 26 2014
-
Mathematica
Table[8^n - 3^n, {n, 0, 19}] (* Alonso del Arte, Feb 25 2014 *) CoefficientList[Series[5 x/((1 - 3 x) (1 - 8 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 05 2014 *)
-
PARI
a(n)=8^n-3^n \\ Charles R Greathouse IV, Jun 02 2011
Formula
a(n) = 11*a(n-1) - 24*a(n-2).
From Vincenzo Librandi, Oct 05 2014: (Start)
G.f.: 5*x/((1-3*x)*(1-8*x)).
a(n+1) = 5*A016140(n). (End)
E.g.f.: 2*exp(11*x/2)*sinh(5*x/2). - Elmo R. Oliveira, Mar 31 2025
Comments