cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A192013 a(n) = Sum_{d|n} Kronecker(-6, d).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 0, 2, 2, 1, 0, 1, 0, 2, 2, 2, 0, 1, 3, 0, 1, 2, 2, 2, 2, 1, 2, 0, 4, 1, 0, 0, 0, 2, 0, 2, 0, 2, 2, 0, 0, 1, 3, 3, 0, 0, 2, 1, 4, 2, 0, 2, 2, 2, 0, 2, 2, 1, 0, 2, 0, 0, 0, 4, 0, 1, 2, 0, 3, 0, 4, 0, 2, 2, 1, 0, 2, 2, 0, 0, 2, 2, 0, 2, 0, 0, 2, 0, 0, 1, 2, 3, 2, 3, 2, 0, 2, 0, 4
Offset: 1

Views

Author

Michael Somos, Jun 22 2011

Keywords

Examples

			G.f. = x + x^2 + x^3 + x^4 + 2*x^5 + x^6 + 2*x^7 + x^8 + x^9 + 2*x^10 + ...
		

Crossrefs

Cf. A109017(n) = Kronecker(-6, n). - Michael Somos, Jul 22 2015

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -6, d], { d, Divisors[n]}]];
  • PARI
    {a(n) = sumdiv( n, d, kronecker( -6, d))};
    
  • PARI
    a(n)=sumdivmult(n, d, kronecker(-6, d)) \\ Charles R Greathouse IV, Dec 14 2016

Formula

Moebius transform is period 24 sequence [ 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = a(3^e) = 1, a(p^e) = e+1 if p == 1, 5, 7, 11 (mod 24), a(p^e) = (1 + (-1)^e)/2 if p == 13, 17, 19, 23 (mod 24).
G.f.: Sum_{k>0} x^k * (1 + x^(4*k)) * (1 + x^(6*k)) / (1 + x^(12*k)).
Dirichlet g.f.: zeta(s) * L(chi,s) where chi(n) = Kronecker(-6, n). Sum_{n>0} a(n) / n^s = Product_{p prime} 1 / ((1 - p^-s) * (1 - Kronecker(-6, p) * p^-s)).
a(n) = A000377(n) = A000377(2*n) = A190611(2*n). a(n) = a(2*n) = a(3*n). - Michael Somos, Jul 22 2015
0 <= a(n) <= d(n) and these bounds are sharp. - Charles R Greathouse IV, Dec 14 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(6) = 1.282549... . - Amiram Eldar, Oct 17 2022

A000377 Expansion of f(-q^3) * f(-q^8) * chi(-q^12) / chi(-q) in powers of q where chi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 0, 2, 2, 1, 0, 1, 0, 2, 2, 2, 0, 1, 3, 0, 1, 2, 2, 2, 2, 1, 2, 0, 4, 1, 0, 0, 0, 2, 0, 2, 0, 2, 2, 0, 0, 1, 3, 3, 0, 0, 2, 1, 4, 2, 0, 2, 2, 2, 0, 2, 2, 1, 0, 2, 0, 0, 0, 4, 0, 1, 2, 0, 3, 0, 4, 0, 2, 2, 1, 0, 2, 2, 0, 0, 2, 2, 0, 2, 0, 0, 2, 0, 0, 1, 2, 3, 2, 3, 2
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 42 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 + q + q^2 + q^3 + q^4 + 2*q^5 + q^6 + 2*q^7 + q^8 + q^9 + 2*q^10 + ...
		

References

  • George E. Andrews, editor, P. A. MacMahon: Collected Papers Volume II, MIT Press, 1986, p. 260.
  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 81, Eq. (32.5).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(24), 1), 102); A[1] + A[2] + A[3] + A[4] + A[5] + 2*A[6] + A[7] + 2*A[8] + A[9] + A[10] + 2*A[11] + 2*A[12]; /* Michael Somos, May 17 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, KroneckerSymbol[ -6, #] &]] (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[(EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^6] + EllipticTheta[ 3, 0, q^2] EllipticTheta[ 3, 0, q^3]) / 2, {q, 0, n}]; (* Michael Somos, May 17 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^3] QPochhammer[ q^8] QPochhammer[ -q, q] / QPochhammer[ -q^12, q^12] , {q, 0, n}]; (* Michael Somos, May 17 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv( n, d, kronecker( -6, d)))};
    
  • PARI
    {a(n) = if( n<1, n==0, direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -6, p) * X)))[n])};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^8 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^24 + A)), n))};
    

Formula

Expansion of (phi(q) * phi(q^6) + phi(q^2) * phi(q^3)) / 2 = psi(-q^2) * psi(-q^3) * chi(-q^6) * chi(-q^12) / (chi(-q) * chi(-q^2)) in powers of q where phi(), psi(), chi() are Ramanujan theta functions. - Michael Somos, Jan 26 2006
Expansion of eta(q^2) * eta(q^3) * eta(q^8) * eta(q^12) / (eta(q) * eta(q^24)) in powers of q.
Multiplicative with a(0) = 1, a(2^e) = a(3^e) = 1, a(p^e) = e+1 if p == 1, 5, 7, 11 (mod 24), a(p^e) = (1 + (-1)^e) / 2 if p == 13, 17, 19, 23 (mod 24). - Michael Somos, Jun 17 2005
Moebius transform is period 24 sequence [ 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, ...]. - Michael Somos, Jan 26 2006
Euler transform of period 24 sequence [ 1, 0, 0, 0, 1, -1, 1, -1, 0, 0, 1, -2, 1, 0, 0, -1, 1, -1, 1, 0, 0, 0, 1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 24^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 22 2011
G.f.: Product_{k>0} (1 + x^k) * (1 - x^(3*k)) * (1 - x^(8*k)) / (1 + x^(12*k)).
G.f.: 1 + Sum_{k>0} x^k * (1 + x^(4*k)) * (1 + x^(6*k)) / (1 + x^(12*k)). - Michael Somos, Sep 10 2005
G.f.: 1 + Sum{n = -infinity...infinity} (q^n + q^(5*n)) / (1 + q^(12*n)) (see Berkovich/Yesilyurt). - Ralf Stephan, May 14 2007
a(n) = (-1)^n * A190611(n). a(24*n + 13) = a(24*n + 17) = a(24*n + 19) = a(24*n + 23) = 0. a(2*n) = a(3*n) = a(n). a(2*n + 1) = A129402(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(6) = 1.2825... . - Amiram Eldar, Oct 23 2022

Extensions

Edited by Michael Somos, Sep 10 2002

A129402 Expansion of phi(x^3) * psi(x^4) + x * phi(x) * psi(x^12) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 0, 2, 0, 0, 2, 0, 3, 1, 2, 2, 2, 4, 0, 0, 0, 0, 2, 0, 3, 0, 2, 4, 0, 2, 0, 2, 0, 0, 0, 0, 2, 3, 4, 2, 1, 2, 0, 2, 0, 0, 2, 0, 2, 2, 2, 2, 4, 2, 0, 0, 0, 0, 0, 0, 3, 0, 4, 2, 0, 2, 0, 2, 0, 0, 0, 0, 4, 3, 2, 2, 0, 4, 0, 2, 0, 0, 4, 0, 1, 0, 2
Offset: 0

Views

Author

Michael Somos, Apr 13 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f = 1 + x + 2*x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^7 + 2*x^10 + 3*x^12 + x^13 + 2*x^14 + ...
G.f. = q + q^3 + 2*q^5 + 2*q^7 + q^9 + 2*q^11 + 2*q^15 + 2*q^21 + 3*q^25 + q^27 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 83, Eq. (32.57).

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 2 n + 1, KroneckerSymbol[ -6, #] &]]; (* Michael Somos, Nov 11 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2] QPochhammer[ x^3] QPochhammer[ -x, x] QPochhammer[ x^6, -x^6], {x, 0, n}]; (* Michael Somos, Nov 11 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n+1; sumdiv( n, d, kronecker( -6, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^4 + A)^3 * eta(x^6 + A) * eta(x^24 + A) / (eta(x + A) * eta(x^8 + A) * eta(x^12 + A)^2), n))};

Formula

Expansion of f(x^2) * f(-x^3) / (chi(-x) * chi(x^6)) in powers of x where f(), chi() are Ramanujan theta functions.
Expansion of q^(-1/2) * eta(q^3) * eta(x^4)^3 * eta(q^6) * eta(q^24) / (eta(q) * eta(q^8) * eta(q^12)^12) in powers of q.
Euler transform of period 24 sequence [ 1, 1, 0, -2, 1, -1, 1, -1, 0, 1, 1, -2, 1, 1, 0, -1, 1, -1, 1, -2, 0, 1, 1, -2, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = 1, b(p^e) = e+1 if p == 1, 5, 7, 11 (mod 24), b(p^e) = (1 + (-1)^e)/2 if p == 13, 17, 19, 23 (mod 24).
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 24^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A190611.
a(12*n + 6) = a(12*n + 8) = a(12*n + 9) = a(12*n + 11) = 0. a(3*n + 1) = a(n).
a(n) = A000377(2*n + 1). a(3*n + 2) = 2 * A128582(n). a(12*n) = A113780(n).
a(n) = (-1)^n * A190615(n) = (-1)^floor( (n+1) / 2) * A128580(n). - Michael Somos, Nov 11 2015
a(2*n) = A261118(n). a(2*n + 1) = A261119(n). a(3*n) = A261115(n). - Michael Somos, Nov 11 2015
a(4*n) = A260308(n). a(4*n + 1) = A257920(n). a(4*n + 2) = 2 * A259895(n). - Michael Somos, Nov 11 2015
a(n) = - A261122(4*n + 2). - Michael Somos, Nov 11 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(6) = 1.282549... . - Amiram Eldar, Dec 28 2023

A261122 Expansion of f(-x) * f(x^4, x^8)^2 / f(-x^3, -x^9) in powers of x where f(,) is Ramanujan's general theta function.

Original entry on oeis.org

1, -1, -1, 1, 1, -2, -1, 2, 1, -1, -2, 2, 1, 0, -2, 2, 1, 0, -1, 0, 2, -2, -2, 0, 1, -3, 0, 1, 2, -2, -2, 2, 1, -2, 0, 4, 1, 0, 0, 0, 2, 0, -2, 0, 2, -2, 0, 0, 1, -3, -3, 0, 0, -2, -1, 4, 2, 0, -2, 2, 2, 0, -2, 2, 1, 0, -2, 0, 0, 0, -4, 0, 1, -2, 0, 3, 0, -4
Offset: 0

Views

Author

Michael Somos, Aug 09 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x - x^2 + x^3 + x^4 - 2*x^5 - x^6 + 2*x^7 + x^8 - x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 2^(1/2) EllipticTheta[ 4, 0, x^12]^2 EllipticTheta[ 2, Pi/4, x]^2 / (EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, Pi/4, x^(3/2)]), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A) * eta(x^8 + A)^2 * eta(x^12 + A)^3 / (eta(x^3 + A) * eta(x^4 + A)^2 * eta(x^24 + A)^2), n))};

Formula

Expansion of phi(-x^12)^2 * psi(-x^2)^2 / (psi(x) * psi(-x^3)) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q) * eta(q^6) * eta(q^8)^2 * eta(q^12)^3 / (eta(q^3) * eta(q^4)^2 * eta(q^24)^2) in powers of q.
Euler transform of period 24 sequence [ -1, -1, 0, 1, -1, -1, -1, -1, 0, -1, -1, -2, -1, -1, 0, -1, -1, -1, -1, 1, 0, -1, -1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = 384^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A261119.
a(n) = (-1)^(n + floor(n/2)) * A000377(n) = (-1)^floor(n/2) * A190611(n).
a(2*n) = A190611(n). a(2*n + 1) = - A190615(n). a(4*n) = A000377(n). a(4*n + 1) = - A261118(n). a(4*n + 2) = - A129402(n). a(4*n + 3) - A261119(n).

A258587 Expansion of f(-x, -x) * f(x^2, x^10) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, -2, 1, -2, 2, 0, 2, 0, 0, -2, 1, -4, 0, 0, 2, 0, 3, -2, 2, -2, 2, 0, 0, 0, 0, -4, 2, -2, 0, 0, 0, 0, 3, -2, 0, -2, 4, 0, 2, 0, 0, -4, 1, -2, 0, 0, 4, 0, 2, -2, 0, -4, 2, 0, 0, 0, 0, -2, 2, -2, 0, 0, 0, 0, 2, -2, 3, -4, 2, 0, 2, 0, 0, 0, 2, -2, 0, 0, 2, 0, 3
Offset: 0

Views

Author

Michael Somos, Nov 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + x^2 - 2*x^3 + 2*x^4 + 2*x^6 - 2*x^9 + x^10 - 4*x^11 + 2*x^14 + ...
G.f. = q^2 - 2*q^5 + q^8 - 2*q^11 + 2*q^14 + 2*q^20 - 2*q^29 + q^32 - 4*q^35 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] QPochhammer[ -x^2, x^12] QPochhammer[ -x^10, x^12] QPochhammer[ x^12], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] QPochhammer[ -x^2, x^4] EllipticTheta[ 2, 0, x^3] / (2^(1/2) x^(3/4)), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^6 + A) * eta(x^24 + A) / (eta(x^2 + A)^2 * eta(x^8 + A) * eta(x^12 + A)), n))};

Formula

Expansion of phi(-x) * chi(x^2) * psi(-x^6) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of q^(-2/3) * eta(q)^2 * eta(q^4)^2 * eta(q^6) * eta(q^24) / (eta(q^2)^2 * eta(q^8) * eta(q^12)) in powers of q.
Euler transform of period 24 sequence [ -2, 0, -2, -2, -2, -1, -2, -1, -2, 0, -2, -2, -2, 0, -2, -1, -2, -1, -2, -2, -2, 0, -2, -2, ...].
a(n) = (-1)^n * A263548(n) = A128581(3*n + 2) = A190611(3*n + 2).
a(2*n) = A263571(n). a(2*n + 1) = -2 * A128582(n).

A279947 Expansion of f(x^2, x^2) * f(-x, -x^5) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, -1, 2, -2, 0, -1, 0, -2, 3, -2, 2, 0, 0, -2, 0, 0, 3, 0, 4, -2, 0, -1, 0, -4, 2, 0, 2, 0, 0, -2, 0, 0, 2, -3, 2, -2, 0, -2, 0, -2, 3, -2, 2, 0, 0, 0, 0, 0, 4, 0, 2, -4, 0, -2, 0, -2, 1, 0, 6, 0, 0, 0, 0, 0, 2, -3, 2, -2, 0, 0, 0, -2, 4, -4, 2, 0, 0, -2, 0
Offset: 0

Views

Author

Michael Somos, Dec 23 2016

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + 2*x^2 - 2*x^3 - x^5 - 2*x^7 + 3*x^8 - 2*x^9 + 2*x^10 + ...
G.f. = q - q^4 + 2*q^7 - 2*q^10 - q^16 - 2*q^22 + 3*q^25 - 2*q^28 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 3 n + 1}, (-1)^n DivisorSum[ m, KroneckerSymbol[ 2, #] KroneckerSymbol[ -3, m/#] &]]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^2] QPochhammer[ x^6] QPochhammer[ x, x^6] QPochhammer[ x^5, x^6], {x, 0, n}];
  • PARI
    {a(n) = my(m); if( n<0, 0, m = 3*n + 1; (-1)^n * sumdiv( m, d, kronecker( 2, d) * kronecker( -3, m/d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^5 * eta(x^6 + A)^2 / (eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^8 + A)^2), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, A = factor(3*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, -(-1)^e, p==3, (-1)^e, p%24==1 || p%24==7, e+1, p%24==5 || p%24==11, (e+1)*(-1)^e, !(e%2))))};

Formula

Expansion of chi(-x) * phi(x^2) * psi(x^3) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of q^(-1/3) * eta(q) * eta(q^4)^5 * eta(q^6)^2 / (eta(q^2)^3 * eta(q^3) * eta(q^8)^2) in powers of q.
Euler transform of period 24 sequence [ -1, 2, 0, -3, -1, 1, -1, -1, 0, 2, -1, -4, -1, 2, 0, -1, -1, 1, -1, -3, 0, 2, -1, -2, ...].
a(n) = b(3*n + 1) where b() is multiplicative with b(2^e) = -(-1)^e if e>0, b(3^e) = (-1)^e, b(p^e) = e+1 if p == 1, 7 (mod 24), b(p^e) = (e+1) * (-1)^e if p == 5, 11 (mod 24), b(p^e) = (1 + (-1)^e) / 2 if p == 13, 17, 19, 23 (mod 24).
a(n) = (-1)^n * A263571(n) = A128581(3*n + 1) = - A190611(3*n + 1) = - A261122(6*n + 2).
a(2*n) = A261115(n).
a(2*n + 1) = - A263548(n).
a(8*n + 4) = a(8*n + 6) = 0.
a(4*n + 1) = -a(n).
a(4*n + 3) = -2 * A128582(n).
a(8*n) = A113780(n).
a(8*n + 2) = 2 * A260089(n).
a(16*n + 3) = -2 * A128583(n).
a(16*n + 7) = -2 * A128591(n).
Showing 1-6 of 6 results.