cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A279541 Indices of records in A192013: Sum_{d|n} Kronecker(-6, d).

Original entry on oeis.org

1, 5, 25, 35, 175, 385, 1225, 1925, 9625, 13475, 48125, 55825, 148225, 279125, 390775, 1395625, 1730575, 4298525, 8652875, 12114025, 43264375, 60570125, 133254275, 302850625, 423990875, 642043325, 2119954375
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    smooth(P:vec, lim)=my(v=List([1]), nxt=vector(#P, i, 1), indx, t); while(1, t=vecmin(vector(#P, i, v[nxt[i]]*P[i]), &indx); if(t>lim, break); if(t>v[#v], listput(v, t)); nxt[indx]++); Vec(v);
    ok(p)=p=p%24; p==1 || p==5 || p==7 || p==11;
    A192013(n)=sumdivmult(n, d, kronecker(-6, d));
    list(lim)=my(u=List([1]),v=[5],r,t); forprime(p=7,, if(ok(p), if(v[#v]*p>lim, break); v=concat(v, v[#v]*p))); v=smooth(v,lim); for(i=2,#v, t=A192013(v[i]); if(t>r, r=t; listput(u,v[i]))); Vec(u)

A279542 Records in A192013: Sum_{d|n} Kronecker(-6, d).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 32, 36, 40, 48, 54, 64, 72, 80, 96, 108, 120, 128, 144, 160, 192, 216, 240, 256, 288, 320, 360, 384, 432, 480, 512, 576, 640, 720, 768, 864, 960, 1024, 1152, 1280, 1440, 1536, 1728, 1920, 2048, 2304, 2400, 2560, 2880, 3072, 3456, 3840, 4096
Offset: 1

Views

Author

Keywords

Examples

			Let (m|n) = Kronecker(m, n) be the Kronecker symbol.
A192013(1) = (-6|1) = 1 = a(1).
A192013(5) = (-6|1) + (-6|5) = 2 = a(2).
A192013(25) = (-6|1) + (-6|5) + (-6|25) = 3 = a(3).
A192013(35) = (-6|1) + (-6|5) + (-6|7) + (-35|1) = 4 = a(4).
A192013(175) = (-6|1) + (-6|5) + (-6|7) + (-6|25) + (-6|35) + (-6|175) = 6 = a(5).
A192013(385) = (-6|1) + (-6|5) + (-6|7) + (-6|11) + (-6|35) + (-6|55) + (-6|77) + (-6|385) = 8 = a(6).
		

Crossrefs

Formula

a(n) = A192013(A279541(n)) = A000005(A279541(n)).

A115660 Expansion of (phi(q) * phi(q^6) - phi(q^2) * phi(q^3)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, -1, 1, -2, 1, 2, -1, 1, 2, -2, -1, 0, -2, 2, 1, 0, -1, 0, -2, -2, 2, 0, 1, 3, 0, -1, 2, -2, -2, 2, -1, 2, 0, -4, 1, 0, 0, 0, 2, 0, 2, 0, -2, -2, 0, 0, -1, 3, -3, 0, 0, -2, 1, 4, -2, 0, 2, -2, 2, 0, -2, 2, 1, 0, -2, 0, 0, 0, 4, 0, -1, 2, 0, -3, 0, -4, 0
Offset: 1

Views

Author

Michael Somos, Jan 28 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 41 of the 74 eta-quotients listed in Table I of Martin (1996). - Michael Somos, Mar 14 2012

Examples

			G.f. = q - q^2 - q^3 + q^4 - 2*q^5 + q^6 + 2*q^7 - q^8 + q^9 + 2*q^10 - 2*q^11 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q] QPochhammer[ q^4] QPochhammer[ q^6] QPochhammer[ q^24] / (QPochhammer[ q^3] QPochhammer[ q^8]), {q, 0, n}]; (* Michael Somos, Apr 19 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^6] - EllipticTheta[ 3, 0, q^2] EllipticTheta[ 3, 0, q^3]) / 2, {q, 0, n}]; (* Michael Somos, Apr 19 2015 *)
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ 2, d] KroneckerSymbol[ -3, n/d], {d, Divisors[ n]}]]; (* Michael Somos, Apr 19 2015 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[ # == 1, 1, # < 5, (-1)^#2, Mod[#, 24] < 12, (#2 + 1) KroneckerSymbol[ #, 12]^#2, True, 1 - Mod[#2, 2]]& @@@ FactorInteger[n])]; (* Michael Somos, Oct 22 2015 *)
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, (-1)^e, p%24<12, (e+1) * kronecker( p, 12)^e, 1-e%2)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^24 + A) / (eta(x^3 + A) * eta(x^8 + A)), n))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( 2, d) * kronecker( -3, n/d)))};

Formula

Expansion of eta(q) * eta(q^4) * eta(q^6) * eta(q^24) / (eta(q^3) * eta(q^8)) in powers of q.
Euler transform of period 24 sequence [ -1, -1, 0, -2, -1, -1, -1, -1, 0, -1, -1, -2, -1, -1, 0, -1, -1, -1, -1, -2, 0, -1, -1, -2, ...].
a(n) is multiplicative with a(2^e) = a(3^e) = (-1)^e, a(p^e) = e+1 if p == 1, 7 (mod 24), a(p^e) = (e+1) * (-1)^e if p == 5, 11 (mod 24), a(p^e) = (1 + (-1)^e) / 2 if p == 13, 17, 19, 23 (mod 24).
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 24^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: Sum_{k>0} Kronecker(k,8) * x^k / (1 + x^k + x^(2*k)) = Sum_{k>0} Kronecker(k,3) * x^k * (1 - x^(2*k)) / (1 + x^(4*k)).
abs(a(n)) = A000377(n). a(n) = (-1)^n * A128581(n). a(2*n) = a(3*n) = -a(n). a(2*n + 1) = A128580(n). - Michael Somos, Mar 14 2012
abs(a(n)) = A192013(n) unless n=0. - Michael Somos, Oct 22 2015
a(3*n + 1) = A263571(n). a(4*n) = A259668(n). a(6*n + 1) = A261115(n). a(6*n + 4) = A263548(n). a(8*n + 1) = A260308(n). - Michael Somos, Oct 22 2015
a(n) = A000377(n) - A108563(n) = A046113(n) - A000377(n). - Michael Somos, Oct 22 2015

A128581 Expansion of (phi(q^2) * phi(-q^3) - phi(-q) * phi(q^6)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, -1, -1, -2, -1, 2, 1, 1, -2, -2, 1, 0, 2, 2, -1, 0, 1, 0, 2, -2, -2, 0, -1, 3, 0, -1, -2, -2, 2, 2, 1, 2, 0, -4, -1, 0, 0, 0, -2, 0, -2, 0, 2, -2, 0, 0, 1, 3, 3, 0, 0, -2, -1, 4, 2, 0, -2, -2, -2, 0, 2, 2, -1, 0, 2, 0, 0, 0, -4, 0, 1, 2, 0, -3, 0, -4, 0
Offset: 1

Views

Author

Michael Somos, Mar 11 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + q^2 - q^3 - q^4 - 2*q^5 - q^6 + 2*q^7 + q^8 + q^9 - 2*q^10 - ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, -(-1)^n DivisorSum[ n, KroneckerSymbol[ #, 8] KroneckerSymbol[ n/#, 3] &]]; (* Michael Somos, Nov 15 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q^2] EllipticTheta[ 4, 0, q^3] - EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^6])/2, {q, 0, n}]; (* Michael Somos, Nov 15 2015 *)
    a[ n_] := SeriesCoefficient[ q QPochhammer[ -q] QPochhammer[ q^24] QPochhammer[ q^4, q^8] QPochhammer[ q^3, -q^3], {q, 0, n}]; (* Michael Somos, Nov 15 2015 *)
  • PARI
    {a(n) = -(-1)^n * sumdiv(n, d, kronecker(d, 8) * kronecker(n/d, 3))}
    
  • PARI
    {a(n) = my(A =  x * O(x^n)); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^12 + A) * eta(x^24 + A) / (eta(x + A) * eta(x^6 + A)^2 * eta(x^8 + A)), n)}
    
  • PARI
    A128581(n)={prod(i=1,matsize(n=factor(n))[1], if(12>n[i,1]%24, if(bittest(12,n[i,1]),(-1)^(n[i,1]+n[i,2]-1), if(bittest(n[i,2],0)&&n[i,1]%6>1,-n[i,2]-1,n[i,2]+1)), !bittest(n[i,2],0)))} \\ a(p^e) as given in formula. - M. F. Hasler, May 07 2018

Formula

Expansion of eta(q^2)^3 * eta(q^3) * eta(q^12) * eta(q^24) / (eta(q) * eta(q^6)^2 * eta(q^8)) in powers of q.
Euler transform of period 24 sequence [ 1, -2, 0, -2, 1, -1, 1, -1, 0, -2, 1, -2, 1, -2, 0, -1, 1, -1, 1, -2, 0, -2, 1, -2, ...].
Multiplicative with a(2^e) = -(-1)^e if e>0, a(3^e) = (-1)^e, a(p^e) = e+1 if p == 1, 7 (mod 24), a(p^e) = (e+1)(-1)^e if p == 5, 11 (mod 24), a(p^e) = (1 + (-1)^e)/2 if p == 13, 17, 19, 23 (mod 24).
a(n) = -(-1)^n * A115660(n). a(2*n) = A115660(n). a(2*n + 1) = A128580(n).
abs(a(n)) = A000377(n) = A192013(n). - M. F. Hasler, May 07 2018

A263548 Expansion of f(x, x) * f(x^2, x^10) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 1, 2, 2, 0, 2, 0, 0, 2, 1, 4, 0, 0, 2, 0, 3, 2, 2, 2, 2, 0, 0, 0, 0, 4, 2, 2, 0, 0, 0, 0, 3, 2, 0, 2, 4, 0, 2, 0, 0, 4, 1, 2, 0, 0, 4, 0, 2, 2, 0, 4, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 2, 2, 3, 4, 2, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 3, 6, 2, 2, 2, 0, 0
Offset: 0

Views

Author

Michael Somos, Oct 20 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + x^2 + 2*x^3 + 2*x^4 + 2*x^6 + 2*x^9 + x^10 + 4*x^11 + ...
G.f. = q^2 + 2*q^5 + q^8 + 2*q^11 + 2*q^14 + 2*q^20 + 2*q^29 + q^32 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^2, x^12] QPochhammer[ -x^10, x^12] QPochhammer[ x^12], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^2, x^4] EllipticTheta[ 2, Pi/4, x^3] / (2^(1/2) x^(3/4)), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^6 + A) * eta(x^24 + A) / (eta(x + A)^2 * eta(x^8 + A) * eta(x^12 + A)), n))};

Formula

Expansion of phi(x) * chi(x^2) * psi(-x^6) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of q^(-2/3) * eta(q^2)^4 * eta(q^6) * eta(q^24) / (eta(q)^2 * eta(q^8) * eta(q^12)) in powers of q.
Euler transform of period 24 sequence [ 2, -2, 2, -2, 2, -3, 2, -1, 2, -2, 2, -2, 2, -2, 2, -1, 2, -3, 2, -2, 2, -2, 2, -2, ...].
a(n) = A000377(3*n + 2) = A192013(3*n + 2) = A115660(6*n + 4).

A035184 a(n) = Sum_{d|n} Kronecker(-1, d).

Original entry on oeis.org

1, 2, 0, 3, 2, 0, 0, 4, 1, 4, 0, 0, 2, 0, 0, 5, 2, 2, 0, 6, 0, 0, 0, 0, 3, 4, 0, 0, 2, 0, 0, 6, 0, 4, 0, 3, 2, 0, 0, 8, 2, 0, 0, 0, 2, 0, 0, 0, 1, 6, 0, 6, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 7, 4, 0, 0, 6, 0, 0, 0, 4, 2, 4, 0, 0, 0, 0, 0, 10, 1, 4, 0, 0, 4, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 2, 2, 0, 9, 2, 0, 0, 8, 0
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x + 2*x^2 + 3*x^4 + 2*x^5 + 4*x^8 + x^9 + 4*x^10 + 2*x^13 + 5*x^16 + 2*x^17 + ...
		

Crossrefs

Inverse Moebius transform of A034947.
Sum_{d|n} Kronecker(k, d): A035143..A035181 (k=-47..-9, skipping numbers that are not cubefree), A035182 (k=-7), A192013 (k=-6), A035183 (k=-5), A002654 (k=-4), A002324 (k=-3), A002325 (k=-2), this sequence (k=-1), A000012 (k=0), A000005 (k=1), A035185 (k=2), A035186 (k=3), A001227 (k=4), A035187..A035229 (k=5..47, skipping numbers that are not cubefree).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[-1, #] &]; Array[a, 105] (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1/((1 - X) * (1 - kronecker( -1, p) * X))) [n])}; /* Michael Somos, Jan 05 2012 */
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -1, d)))}; /* Michael Somos, Jan 05 2012 */

Formula

a(n) is multiplicative with a(2^e) = e + 1, a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4). - Michael Somos, Jan 05 2012
a(4*n + 3) = a(9*n + 3) = a(9*n + 6) = 0. a(4*n + 1) = A008441(n). a(8*n + 1) = A113407(n). a(8*n + 5) = 2 * A053692(n). a(12*n + 1) = A002175(n). a(12*n + 5) = 2 * A121444(n).
Dirichlet g.f.: zeta(s)*beta(s)/(1 - 2^(-s)), where beta is the Dirichlet beta function. - Ralf Stephan, Mar 27 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 = 1.570796... (A019669). - Amiram Eldar, Oct 17 2022

A257920 Expansion of phi(x) * psi(x^3) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 0, 1, 4, 0, 0, 2, 0, 3, 2, 0, 2, 2, 0, 0, 2, 0, 3, 4, 0, 0, 2, 0, 0, 4, 0, 2, 2, 0, 1, 2, 0, 0, 6, 0, 2, 0, 0, 4, 0, 0, 0, 2, 0, 3, 4, 0, 0, 4, 0, 0, 2, 0, 4, 2, 0, 0, 2, 0, 0, 2, 0, 1, 4, 0, 2, 6, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 4, 0, 4, 2, 0, 3, 2, 0
Offset: 0

Views

Author

Michael Somos, Jul 12 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + x^3 + 4*x^4 + 2*x^7 + 3*x^9 + 2*x^10 + 2*x^12 + 2*x^13 + ...
G.f. = q^3 + 2*q^11 + q^27 + 4*q^35 + 2*q^59 + 3*q^75 + 2*q^83 + 2*q^99 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 2, 0, x^(3/2)] / (2 x^(3/8)), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^6 + A)^2 / (eta(x + A)^2 * eta(x^3 + A) * eta(x^4 + A)^2), n))};

Formula

Expansion of q^(-3/8) * eta(q^2)^5 * eta(q^6)^2 / (eta(q)^2 * eta(q^3) * eta(q^4)^2) in powers of q.
Euler transform of period 12 sequence [ 2, -3, 3, -1, 2, -4, 2, -1, 3, -3, 2, -2, ...].
a(n) = A129402(4*n + 1) = A134177(4*n + 1) = A000377(8*n + 3) = A192013(8*n + 3).
a(3*n + 2) = 0. a(3*n + 1) = 2 * A128591(n).

A259895 Expansion of psi(x^2) * psi(x^3) in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 2, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 0, 0, 1, 3, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 2, 0, 0, 2, 0, 1, 1, 0, 1, 2, 0, 0, 0, 0, 1, 1, 0, 1, 2, 0, 0, 1, 0, 3, 0, 0, 0, 1, 0, 0, 2, 0, 1, 3, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 2
Offset: 0

Views

Author

Michael Somos, Jul 07 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x^2 + x^3 + x^5 + x^6 + 2*x^9 + x^11 + x^12 + 2*x^15 + x^18 + ...
G.f. = q^5 + q^21 + q^29 + q^45 + q^53 + 2*q^77 + q^93 + q^101 + 2*q^125 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, x^(3/2)] / (4 q^(5/8)), {x, 0, n}];
    a[ n_] := If[ n < 0, 0, 1/2 Sum[ KroneckerSymbol[ -6, d], {d, Divisors[8 n + 5]}]]; (* Michael Somos, Jul 22 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^2 * eta(x^6 + A)^2 / (eta(x^2 + A) * eta(x^3 + A)), n))};
    
  • PARI
    {a(n) = if( n<0, 0, 1/2 * sumdiv( 8*n + 5, d, kronecker( -6, d)))};

Formula

Expansion of q^(-5/8) * eta(q^4)^2 * eta(q^6)^2 / (eta(q^2) * eta(q^3)) in powers of q.
Euler transform of period 12 sequence [ 0, 1, 1, -1, 0, 0, 0, -1, 1, 1, 0, -2, ...].
a(n) = A259896(3*n + 1). a(3*n) = A128583(n). a(3*n + 1) = a(9*n + 8) = 0.
2 * a(n) = A129402(4*n + 2) = A190615(4*n + 2) = A000377(8*n + 5) = A192013(8*n + 5). - Michael Somos, Jul 22 2015
-2 * a(n) = A259668(2*n + 1) = A128580(4*n + 2) = A134177(4*n + 2) = A257921(6*n + 3). - Michael Somos, Jul 22 2015
a(3*n + 2) = A259896(n). - Michael Somos, Jul 22 2015

A260308 Expansion of psi(x) * phi(x^3) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 0, 3, 2, 0, 3, 0, 0, 2, 1, 0, 2, 4, 0, 3, 0, 0, 4, 0, 0, 1, 2, 0, 2, 0, 0, 4, 3, 0, 2, 2, 0, 4, 0, 0, 1, 2, 0, 2, 2, 0, 2, 0, 0, 1, 0, 0, 8, 2, 0, 2, 0, 0, 2, 3, 0, 2, 4, 0, 0, 0, 0, 4, 0, 0, 1, 2, 0, 4, 0, 0, 2, 0, 0, 2, 4, 0, 5, 0, 0, 4, 2, 0, 2, 2, 0
Offset: 0

Views

Author

Michael Somos, Jul 22 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + 3*x^3 + 2*x^4 + 3*x^6 + 2*x^9 + x^10 + 2*x^12 + 4*x^13 + ...
G.f. = q + q^9 + 3*q^25 + 2*q^33 + 3*q^49 + 2*q^73 + q^81 + 2*q^97 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 8 n + 1, KroneckerSymbol[ -6, #] &]];
    a[ n_] := If[ n < 0, 0, Times @@ (Which[ # <= 3, Mod[#, 2], Mod[#, 24] > 12, 1 - Mod[#2, 2], True, (#2  + 1) KroneckerSymbol[ 3, #]^#2] & @@@ FactorInteger @ (8 n + 1))];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^3] EllipticTheta[ 2, 0, x^(1/2)] / (2 x^(1/8)), {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, sumdiv( 8*n + 1, d, kronecker( -6, d)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, factor(8*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==3, 1, p%24>12, !(e%2), (e+1) * kronecker(3, p)^e)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^6 + A)^5 / (eta(x + A) * eta(x^3 + A)^2 * eta(x^12 + A)^2), n))};

Formula

Expansion of q^(-1/8) * eta(q^2)^2 * eta(q^6)^5 / (eta(q) * eta(q^3)^2 * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [ 1, -1, 3, -1, 1, -4, 1, -1, 3, -1, 1, -2, ...].
a(n) = A259668(2*n) = A128580(4*n) = A129402(4*n) = A134177(4*n) = A190615(4*n) = A115660(8*n + 1) = A128581(8*n + 1) = A192013(8*n + 1).

A261115 Expansion of f(x, x) * f(x^4, x^8) in powers of x where f(,) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 0, 0, 3, 2, 0, 0, 3, 4, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 3, 2, 0, 0, 4, 2, 0, 0, 1, 6, 0, 0, 2, 2, 0, 0, 4, 2, 0, 0, 2, 0, 0, 0, 4, 2, 0, 0, 1, 4, 0, 0, 2, 4, 0, 0, 2, 4, 0, 0, 1, 2, 0, 0, 8, 0, 0, 0, 2, 4, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 4, 4, 0
Offset: 0

Views

Author

Michael Somos, Aug 08 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 3*x^4 + 2*x^5 + 3*x^8 + 4*x^9 + 2*x^12 + 2*x^13 + 2*x^16 + ...
G.f. = q + 2*q^7 + 3*q^25 + 2*q^31 + 3*q^49 + 4*q^55 + 2*q^73 + 2*q^79 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 4, 0, x^12] / QPochhammer[ x^4, x^8], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^8 + A) * eta(x^12 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^3 * eta(x^24 + A)), n))};

Formula

Expansion of q^(-1/6) * eta(q^2)^5 * eta(q^8) * eta(q^12)^2 / (eta(q)^2 * eta(q^4)^3 * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [ 2, -3, 2, 0, 2, -3, 2, -1, 2, -3, 2, -2, 2, -3, 2, -1, 2, -3, 2, 0, 2, -3, 2, -2, ...].
a(n) = (-1)^n * A260110(n) = A128580(3*n) = A129402(3*n) = A115660(6*n + 1) = A128581(6*n + 1) = A192013(6*n + 1).
a(4*n) = A113780(n). a(4*n + 1) = 2 * A260089(n). a(4*n + 2) = a(4*n + 3) = 0.
Showing 1-10 of 14 results. Next