cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A008441 Number of ways of writing n as the sum of 2 triangular numbers.

Original entry on oeis.org

1, 2, 1, 2, 2, 0, 3, 2, 0, 2, 2, 2, 1, 2, 0, 2, 4, 0, 2, 0, 1, 4, 2, 0, 2, 2, 0, 2, 2, 2, 1, 4, 0, 0, 2, 0, 4, 2, 2, 2, 0, 0, 3, 2, 0, 2, 4, 0, 2, 2, 0, 4, 0, 0, 0, 4, 3, 2, 2, 0, 2, 2, 0, 0, 2, 2, 4, 2, 0, 2, 2, 0, 3, 2, 0, 0, 4, 0, 2, 2, 0, 6, 0, 2, 2, 0, 0, 2, 2, 0, 1, 4, 2, 2, 4, 0, 0, 2, 0, 2, 2, 2, 2, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). The present sequence gives the expansion coefficients of psi(q)^2.
Also the number of positive odd solutions to equation x^2 + y^2 = 8*n + 2. - Seiichi Manyama, May 28 2017

Examples

			G.f. = 1 + 2*x + x^2 + 2*x^3 + 2*x^4 + 3*x^6 + 2*x^7 + 2*x^9 + 2*x^10 + 2*x^11 + ...
G.f. for B(q) = q * A(q^4) = q + 2*q^5 + q^9 + 2*q^13 + 2*q^17 + 3*q^25 + 2*q^29 + 2*q^37 + 2*q^41 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag. See p. 139 Example (iv).
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
  • R. W. Gosper, Strip Mining in the Abandoned Orefields of Nineteenth Century Mathematics, in Computers in Mathematics (Ed. D. V. Chudnovsky and R. D. Jenks). New York: Dekker, 1990. See p. 279.
  • R. W. Gosper, Experiments and discoveries in q-trigonometry, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Editors: F. G. Garvan and M. E. H. Ismail. Kluwer, Dordrecht, Netherlands, 2001, pp. 79-105. [See Pi_q.]
  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916. See vol. 2, p 31, Article 272.
  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991, p. 165.

Crossrefs

Cf. A004020, A005883, A104794, A052343, A199015 (partial sums).
Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.
Cf. A274621 (reciprocal series).

Programs

  • Haskell
    a052343 = (flip div 2) . (+ 1) . a008441
    -- Reinhard Zumkeller, Jul 25 2014
    
  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 420); A[2]; /* Michael Somos, Jan 31 2015 */
  • Maple
    sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc:
    A002654 := proc(n) sigmamr(n,4,1)-sigmamr(n,4,3) ; end proc:
    A008441 := proc(n) A002654(4*n+1) ; end proc:
    seq(A008441(n),n=0..90) ; # R. J. Mathar, Mar 23 2011
  • Mathematica
    Plus@@((-1)^(1/2 (Divisors[4#+1]-1)))& /@ Range[0, 104] (* Ant King, Dec 02 2010 *)
    a[ n_] := SeriesCoefficient[ (1/2) EllipticTheta[ 2, 0, q] EllipticTheta[ 3, 0, q], {q, 0, n + 1/4}]; (* Michael Somos, Jun 19 2012 *)
    a[ n_] := SeriesCoefficient[ (1/4) EllipticTheta[ 2, 0, q]^2, {q, 0, 2 n + 1/2}]; (* Michael Somos, Jun 19 2012 *)
    a[ n_] := If[ n < 0, 0, DivisorSum[ 4 n + 1, (-1)^Quotient[#, 2] &]];  (* Michael Somos, Jun 08 2014 *)
    QP = QPochhammer; s = QP[q^2]^4/QP[q]^2 + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
    TriangleQ[n_] := IntegerQ@Sqrt[8n +1]; Table[Count[FrobeniusSolve[{1, 1}, n], {?TriangleQ}], {n, 0, 104}] (* Robert G. Wilson v, Apr 15 2017 *)
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( sum(k=0, (sqrtint(8*n + 1) - 1)\2, x^(k * (k+1)/2), x * O(x^n))^2, n) )};
    
  • PARI
    {a(n) = if( n<0, 0, n = 4*n + 1; sumdiv(n, d, (-1)^(d\2)))}; /* Michael Somos, Sep 02 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 / eta(x + A)^2, n))};
    
  • PARI
    {a(n) = if( n<0, 0, n = 4*n + 1; sumdiv( n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Sep 14 2005 */
    
  • PARI
    { my(q='q+O('q^166)); Vec(eta(q^2)^4 / eta(q)^2) } \\ Joerg Arndt, Apr 16 2017
    
  • Sage
    ModularForms( Gamma1(8), 1, prec=420).1; # Michael Somos, Jun 08 2014
    

Formula

This sequence is the quadrisection of many sequences. Here are two examples:
a(n) = A002654(4n+1), the difference between the number of divisors of 4*n+1 of form 4*k+1 and the number of form 4*k-1. - David Broadhurst, Oct 20 2002
a(n) = b(4*n + 1), where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 4). - Michael Somos, Sep 14 2005
G.f.: (Sum_{k>=0} x^((k^2 + k)/2))^2 = (Sum_{k>=0} x^(k^2 + k)) * (Sum_{k in Z} x^(k^2)).
Expansion of Jacobi theta (theta_2(0, sqrt(q)))^2 / (4 * q^(1/4)).
Sum[d|(4n+1), (-1)^((d-1)/2) ].
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v^3 + 4 * v * w^2 - u^2 * w. - Michael Somos, Sep 14 2005
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1 * u3 - (u2 - u6) * (u2 + 3*u6). - Michael Somos, Sep 14 2005
Expansion of Jacobi k/(4*q^(1/2)) * (2/Pi)* K(k) in powers of q^2. - Michael Somos, Sep 14 2005. Convolution of A001938 and A004018. This appears in the denominator of the Jacobi sn and cn formula given in the Abramowitz-Stegun reference, p. 575, 16.23.1 and 16.23.2, where m=k^2. - Wolfdieter Lang, Jul 05 2016
G.f.: Sum_{k>=0} a(k) * x^(2*k) = Sum_{k>=0} x^k / (1 + x^(2*k + 1)).
G.f.: Sum_{k in Z} x^k / (1 - x^(4*k + 1)). - Michael Somos, Nov 03 2005
Expansion of psi(x)^2 = phi(x) * psi(x^2) in powers of x where phi(), psi() are Ramanujan theta functions.
Moebius transform is period 8 sequence [ 1, -1, -1, 0, 1, 1, -1, 0, ...]. - Michael Somos, Jan 25 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 1/2 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A104794.
Euler transform of period 2 sequence [ 2, -2, ...].
G.f.: q^(-1/4) * eta(q^2)^4 / eta(q)^2. See also the Fine reference.
a(n) = Sum_{k=0..n} A010054(k)*A010054(n-k). - Reinhard Zumkeller, Nov 03 2009
A004020(n) = 2 * a(n). A005883(n) = 4 * a(n).
Convolution square of A010054.
G.f.: Product_{k>0} (1 - x^(2*k))^2 / (1 - x^(2*k-1))^2.
a(2*n) = A113407(n). a(2*n + 1) = A053692(n). a(3*n) = A002175(n). a(3*n + 1) = 2 * A121444(n). a(9*n + 2) = a(n). a(9*n + 5) = a(9*n + 8) = 0. - Michael Somos, Jun 08 2014
G.f.: exp( Sum_{n>=1} 2*(x^n/n) / (1 + x^n) ). - Paul D. Hanna, Mar 01 2016
a(n) = A001826(2+8*n) - A001842(2+8*n), the difference between the number of divisors 1 (mod 4) and 3 (mod 4) of 2+8*n. See the Ono et al. link, Corollary 1, or directly the Niven et al. reference, p. 165, Corollary (3.23). - Wolfdieter Lang, Jan 11 2017
Expansion of continued fraction 1 / (1 - x^1 + x^1*(1 - x^1)^2 / (1 - x^3 + x^2*(1 - x^2)^2 / (1 - x^5 + x^3*(1 - x^3)^2 / ...))) in powers of x^2. - Michael Somos, Apr 20 2017
Given g.f. A(x), and B(x) is the g.f. for A079006, then B(x) = A(x^2) / A(x) and B(x) * B(x^2) * B(x^4) * ... = 1 / A(x). - Michael Somos, Apr 20 2017
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
From Paul D. Hanna, Aug 10 2019: (Start)
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (x^(2*n+1) - x^(2*k))^(n-k) = Sum_{n>=0} a(n)*x^(2*n).
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (x^(2*n+1) + x^(2*k))^(n-k) * (-1)^k = Sum_{n>=0} a(n)*x^(2*n). (End)
From Peter Bala, Jan 05 2021: (Start)
G.f.: Sum_{n = -oo..oo} x^(4*n^2+2*n) * (1 + x^(4*n+1))/(1 - x^(4*n+1)). See Agarwal, p. 285, equation 6.20 with i = j = 1 and mu = 4.
For prime p of the form 4*k + 3, a(n*p^2 + (p^2 - 1)/4) = a(n).
If n > 0 and p are coprime then a(n*p + (p^2 - 1)/4) = 0. The proofs are similar to those given for the corresponding results for A115110. Cf. A000729.
For prime p of the form 4*k + 1 and for n not congruent to (p - 1)/4 (mod p) we have a(n*p^2 + (p^2 - 1)/4) = 3*a(n) (since b(n), where b(4*n+1) = a(n), is multiplicative). (End)
From Peter Bala, Mar 22 2021: (Start)
G.f. A(q) satisfies:
A(q^2) = Sum_{n = -oo..oo} q^n/(1 - q^(4*n+2)) (set z = q, alpha = q^2, mu = 4 in Agarwal, equation 6.15).
A(q^2) = Sum_{n = -oo..oo} q^(2*n)/(1 - q^(4*n+1)) (set z = q^2, alpha = q, mu = 4 in Agarwal, equation 6.15).
A(q^2) = Sum_{n = -oo..oo} q^n/(1 + q^(2*n+1))^2 = Sum_{n = -oo..oo} q^(3*n+1)/(1 + q^(2*n+1))^2. (End)
G.f.: Sum_{k>=0} a(k) * q^k = Sum_{k>=0} (-1)^k * q^(k*(k+1)) + 2 * Sum_{n>=1, k>=0} (-1)^k * q^(k*(k+2*n+1)+n). - Mamuka Jibladze, May 17 2021
G.f.: Sum_{k>=0} a(k) * q^k = Sum_{k>=0} (-1)^k * q^(k*(k+1)) * (1 + q^(2*k+1))/(1 - q^(2*k+1)). - Mamuka Jibladze, Jun 06 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Oct 15 2022

Extensions

More terms and information from Michael Somos, Mar 23 2003

A034947 Jacobi (or Kronecker) symbol (-1/n).

Original entry on oeis.org

1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Also the regular paper-folding sequence.
For a proof that a(n) equals the paper-folding sequence, see Allouche and Sondow, arXiv v4. - Jean-Paul Allouche and Jonathan Sondow, May 19 2015
It appears that, replacing +1 with 0 and -1 with 1, we obtain A038189. Alternatively, replacing -1 with 0 we obtain (allowing for offset) A014577. - Jeremy Gardiner, Nov 08 2004
Partial sums = A005811 starting (1, 2, 1, 2, 3, 2, 1, 2, 3, ...). - Gary W. Adamson, Jul 23 2008
The congruence in {-1,1} of the odd part of n modulo 4 (Cf. A099545). - Peter Munn, Jul 09 2022

Examples

			G.f. = x + x^2 - x^3 + x^4 + x^5 - x^6 - x^7 + x^8 + x^9 + x^10 - x^11 - x^12 + ...
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, pp. 155, 182.
  • H. Cohen, Course in Computational Number Theory, p. 28.

Crossrefs

Moebius transform of A035184.
Cf. A091072 (indices of 1), A091067 (indices of -1), A371594 (indices of run starts).
The following are all essentially the same sequence: A014577, A014707, A014709, A014710, A034947, A038189, A082410. - N. J. A. Sloane, Jul 27 2012

Programs

  • Magma
    [KroneckerSymbol(-1,n): n in [1..100]]; // Vincenzo Librandi, Aug 16 2016
    
  • Maple
    with(numtheory): A034947 := n->jacobi(-1,n);
  • Mathematica
    Table[KroneckerSymbol[ -1, n], {n, 0, 100}] (* Corrected by Jean-François Alcover, Dec 04 2013 *)
  • PARI
    {a(n) = kronecker(-1, n)};
    
  • PARI
    for(n=1, 81, f=factor(n); print1((-1)^sum(s=1, omega(n), f[s, 2]*(Mod(f[s, 1], 4)==3)), ", ")); \\ Arkadiusz Wesolowski, Nov 05 2013
    
  • PARI
    a(n)=direuler(p=1,n,if(p==2,1/(1-kronecker(-4, p)*X)/(1-X),1/(1-kronecker(-4, p)*X))) /* Ralf Stephan, Mar 27 2015 */
    
  • PARI
    a(n) = if(n%2==0, a(n/2), (n+2)%4-2) \\ Peter Munn, Jul 09 2022
  • Python
    def A034947(n):
        s = bin(n)[2:]
        m = len(s)
        i = s[::-1].find('1')
        return 1-2*int(s[m-i-2]) if m-i-2 >= 0 else 1 # Chai Wah Wu, Apr 08 2021
    
  • Python
    def A034947(n): return -1 if n>>(-n&n).bit_length()&1 else 1 # Chai Wah Wu, Feb 26 2025
    

Formula

Multiplicative with a(2^e) = 1, a(p^e) = (-1)^(e*(p-1)/2) if p>2.
a(2*n) = a(n), a(4*n+1) = 1, a(4*n+3) = -1, a(-n) = -a(n). a(n) = 2*A014577(n-1)-1.
a(prime(n)) = A070750(n) for n > 1. - T. D. Noe, Nov 08 2004
This sequence can be constructed by starting with w = "empty string", and repeatedly applying the map w -> w 1 reverse(-w) [See Allouche and Shallit p. 182]. - N. J. A. Sloane, Jul 27 2012
a(n) = (-1)^A065339(n) = lambda(A097706(n)), where A065339(n) is number of primes of the form 4*m + 3 dividing n (counted with multiplicity) and lambda is Liouville's function, A008836. - Arkadiusz Wesolowski, Nov 05 2013 and Peter Munn, Jun 22 2022
Sum_{n>=1} a(n)/n = Pi/2, due to F. von Haeseler; more generally, Sum_{n>=1} a(n)/n^(2*d+1) = Pi^(2*d+1)*A000364(d)/(2^(2*d+2)-2)(2*d)! for d >= 0; see Allouche and Sondow, 2015. - Jean-Paul Allouche and Jonathan Sondow, Mar 20 2015
Dirichlet g.f.: beta(s)/(1-2^(-s)) = L(chi_2(4),s)/(1-2^(-s)). - Ralf Stephan, Mar 27 2015
a(n) = A209615(n) * (-1)^(v2(n)), where v2(n) = A007814(n) is the 2-adic valuation of n. - Jianing Song, Apr 24 2021
a(n) = 2 - A099545(n) == A000265(n) (mod 4). - Peter Munn, Jun 22 2022 and Jul 09 2022

A002175 Excess of number of divisors of 12n+1 of form 4k+1 over those of form 4k+3.

Original entry on oeis.org

1, 2, 3, 2, 1, 2, 2, 4, 2, 2, 1, 0, 4, 2, 3, 2, 2, 4, 0, 2, 2, 0, 4, 2, 3, 0, 2, 6, 2, 2, 1, 2, 0, 2, 2, 2, 2, 4, 2, 0, 4, 4, 4, 0, 1, 2, 0, 4, 2, 0, 2, 2, 5, 2, 0, 2, 2, 4, 4, 2, 0, 2, 4, 2, 2, 0, 4, 0, 0, 2, 3, 2, 4, 2, 0, 4, 0, 6, 2, 4, 1, 0, 4, 2, 2, 2, 2, 0, 0, 2, 0, 2, 8, 2, 2, 0, 2, 4, 0, 4, 2, 2, 3, 2, 2
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of ways to write n as an ordered sum of 2 generalized pentagonal numbers. - Ilya Gutkovskiy, Aug 14 2017

Examples

			G.f. = 1 + 2*x + 3*x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^6 + 4*x^7 + 2*x^8 + 2*x^9 + ...
G.f. = q + 2*q^13 + 3*q^25 + 2*q^37 + q^49 + 2*q^61 + 2*q^73 + 4*q^85 + 2*q^97 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    series(mul( ( (1 + q^n)*(1 - q^(3*n))/(1 + q^(3*n)) )^2, n = 1..100), q, 101):
    seq(coeftayl(%, q = 0, n), n = 0..100); # Peter Bala, Jan 05 2025
  • Mathematica
    ed[n_]:=Module[{divs=Divisors[12n+1]},Count[divs,?(Mod[#,4] == 1&)]- Count[divs,?(Mod[#,4]==3&)]]; Array[ed,110,0] (* Harvey P. Dale, Jul 01 2012 *)
    a[ n_] := If[ n < 0, 0, With[ {m = 12 n + 1}, Sum[ KroneckerSymbol[ 4, d], {d, Divisors[m]}]]]; (* Michael Somos, Apr 23 2014 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2] QPochhammer[ x^3]^2 / (QPochhammer[ x] QPochhammer[ x^6]))^2, {x, 0, n}]; (* Michael Somos, Apr 23 2014 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, x^3] / QPochhammer[ x, x^2])^2, {x, 0, n}]; (* Michael Somos, May 25 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 12*n + 1; sumdiv( n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Sep 19 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A)^2 / (eta(x + A) * eta(x^6 + A)))^2, n))}; /* Michael Somos, Jun 02 2012 */

Formula

Expansion of (phi(-x^3) / chi(-x))^2 in powers of x where phi(), chi() are Ramanujan theta functions.
Expansion of q^(-1/12) * (eta(q^2) * eta(q^3)^2 / (eta(q) * eta(q^6)))^2 in powers of q. - Michael Somos, Sep 19 2005
Euler transform of period 6 sequence [ 2, 0, -2, 0, 2, -2, ...]. - Michael Somos, Sep 19 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = 2 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A258279. - Michael Somos, May 25 2015
From Michael Somos, Jun 02 2012: (Start)
a(n) = A008441(3*n) = A121363(3*n) = A122865(4*n) = A122856(8*n).
a(n) = A116604(6*n) = A125079(6*n) = A129447(6*n) = A138741(6*n).
From Michael Somos, May 25 2015: (Start)
a(n) = A258277(4*n) = A258278(8*n) = A258291(3*n).
a(n) = - A258210(12*n + 1) = A258228(12*n + 1) = A258256(12*n + 1).
2*a(n) = A258279(12*n + 1) = - A258292(12*n + 1). (End)
G.f.: (Sum_{k = -oo..oo} x^(k*(3*k-1)/2))^2. - Ilya Gutkovskiy, Aug 14 2017
G.f.: ( Product_{n >= 1} (1 + q^n)*(1 - q^(3*n))/(1 + q^(3*n)) )^2. - Peter Bala, Jan 05 2025

A035181 a(n) = Sum_{d|n} Kronecker(-9, d).

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 0, 4, 1, 4, 0, 3, 2, 0, 2, 5, 2, 2, 0, 6, 0, 0, 0, 4, 3, 4, 1, 0, 2, 4, 0, 6, 0, 4, 0, 3, 2, 0, 2, 8, 2, 0, 0, 0, 2, 0, 0, 5, 1, 6, 2, 6, 2, 2, 0, 0, 0, 4, 0, 6, 2, 0, 0, 7, 4, 0, 0, 6, 0, 0, 0, 4, 2, 4, 3, 0, 0, 4, 0, 10, 1, 4, 0, 0, 4, 0, 2, 0, 2, 4, 0, 0, 0, 0, 0, 6, 2, 2, 0, 9, 2, 4, 0, 8, 0
Offset: 1

Views

Author

Keywords

Examples

			x + 2*x^2 + x^3 + 3*x^4 + 2*x^5 + 2*x^6 + 4*x^8 + x^9 + 4*x^10 + 3*x^12 + ...
		

Crossrefs

Sum_{d|n} Kronecker(k, d): A035143..A035181 (k=-47..-9, skipping numbers that are not cubefree), A035182 (k=-7), A192013 (k=-6), A035183 (k=-5), A002654 (k=-4), A002324 (k=-3), A002325 (k=-2), A035184 (k=-1), A000012 (k=0), A000005 (k=1), A035185 (k=2), A035186 (k=3), A001227 (k=4), A035187..A035229 (k=5..47, skipping numbers that are not cubefree).

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -9, d], { d, Divisors[ n]}]] (* Michael Somos, Jun 24 2011 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -9, d)))} \\ Michael Somos, Jun 24 2011
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -9, p) * X))) [n])} \\ Michael Somos, Jun 24 2011
    
  • PARI
    {a(n) = local(A, p, e); if( n<0, 0, A = factor(n); prod(k=1, matsize(A)[1], if(p = A[k, 1], e = A[k, 2]; if( p==2, e+1, if( p==3, 1, if( p%4==1, e+1, (1 + (-1)^e)/2))))))} \\ Michael Somos, Jun 24 2011
    
  • PARI
    A035181(n)=sumdivmult(n,d,kronecker(-9,d)) \\ M. F. Hasler, May 08 2018

Formula

From Michael Somos, Jun 24 2011: (Start)
a(n) is multiplicative with a(2^e) = e + 1, a(3^e) = 1, a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4) and p > 3.
Dirichlet g.f.: zeta(s) * L(chi,s) where chi(n) = Kronecker(-9, n). Sum_{n>0} a(n) / n^s = Product_{p prime} 1 / ((1 - p^-s) * (1 - Kronecker(-9, p) * p^-s)). (End)
a(3*n) = a(n). a(2*n + 1) = A125079(n). a(4*n + 1) = A008441(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/3 = 2.094395... (A019693). - Amiram Eldar, Oct 17 2022

A338690 Inverse Moebius transform of A209615.

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3
Offset: 1

Views

Author

Jianing Song, Apr 24 2021

Keywords

Comments

Earliest occurrence of k is A018782(k).

Crossrefs

Cf. A209615, A035184 (a similar sequence), A018782, A002654, A019673.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 4] == 1, e + 1, (1 + (-1)^e)/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 22 2022 *)
  • PARI
    a(n) = my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); if(p%4==1, r*=e+1, if(e%2, return(0)))); r

Formula

Multiplicative with a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e)/2 if p = 2 or p == 3 (mod 4).
a(n) = A002654(n) = A035184(n) for odd n. a(2^e * m) = a(m) for even m, 0 for odd m.
Dirichlet g.f.: zeta(s)*beta(s)/(1 + 2^(-s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/6 = 0.523598... (A019673). - Amiram Eldar, Oct 22 2022
Showing 1-5 of 5 results.