A190641 Numbers having exactly one non-unitary prime factor.
4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 40, 44, 45, 48, 49, 50, 52, 54, 56, 60, 63, 64, 68, 75, 76, 80, 81, 84, 88, 90, 92, 96, 98, 99, 104, 112, 116, 117, 120, 121, 124, 125, 126, 128, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Vaclav Kotesovec, Graph - the asymptotic ratio.
- Carl Pomerance and Andrzej Schinzel, Multiplicative Properties of Sets of Residues, Moscow Journal of Combinatorics and Number Theory, Vol. 1, Iss. 1 (2011), pp. 52-66. See p. 61.
Crossrefs
Programs
-
Haskell
a190641 n = a190641_list !! (n-1) a190641_list = map (+ 1) $ elemIndices 1 a056170_list
-
Mathematica
Select[Range[164],Count[FactorInteger[#][[All, 2]], 1] == Length[FactorInteger[#]] - 1 &] (* Geoffrey Critzer, Feb 05 2015 *)
-
PARI
list(lim)=my(s=lim\4, v=List(), u=vectorsmall(s, i, 1), t, x); forprime(k=2, sqrtint(s), t=k^2; forstep(i=t, s, t, u[i]=0)); forprime(k=2, sqrtint(lim\1), for(e=2,logint(lim\1,k), t=k^e; for(i=1, #u, if(u[i] && gcd(k, i)==1, x=t*i; if(x>lim, break); listput(v, x))))); Set(v) \\ Charles R Greathouse IV, Aug 02 2016
-
PARI
isok(n) = my(f=factor(n)); #select(x->(x>1), f[,2]) == 1; \\ Michel Marcus, Jul 30 2017
Formula
A056170(a(n)) = 1.
a(n) ~ k*n, where k = Pi^2/(6*A154945) = 2.9816096.... - Charles R Greathouse IV, Aug 02 2016
Comments