cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190644 Least number k>1 such that (tau(k-1)+tau(k+1))/tau(k) = n where tau = A000005.

Original entry on oeis.org

6, 34, 39, 7, 11, 19, 29, 41, 79, 71, 179, 199, 181, 239, 883, 419, 701, 839, 881, 1429, 2351, 1259, 1871, 2161, 4049, 3079, 3361, 2521, 6481, 4159, 6299, 5279, 11551, 5039, 20789, 7561, 25919, 10079, 16561, 13441, 38611, 13859, 23761, 21839, 100673, 20161
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 15 2011

Keywords

Crossrefs

Cf. A000005 (number of divisors of n), A190612.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) local k;
          for k from 2 while (tau(k-1)+tau(k+1)) /tau(k)<>n do od; k
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, May 19 2011
  • Mathematica
    tau = DivisorSigma[0, #]&;
    a[n_] := For[k=2, True, k++, If[(tau[k-1]+tau[k+1])/tau[k]==n, Return[k]]];
    Array[a, 50] (* Jean-François Alcover, Mar 27 2017 *)
    Module[{nn=300000,tau},tau=(#[[1]]+#[[3]])/#[[2]]&/@Partition[DivisorSigma[ 0,Range[nn]],3,1];Flatten[Table[Position[tau,n,1,1],{n,50}]]+1] (* Harvey P. Dale, Nov 24 2022 *)
  • Sage
    def A190644(n):
        tau = number_of_divisors
        return next((k for k in IntegerRange(2,infinity) if tau(k-1)+tau(k+1) == n*tau(k))) # D. S. McNeil, May 19 2011