cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190722 Primes p such that A008472(p-1) = A008472(p+1) and is a prime.

Original entry on oeis.org

3, 45751, 149351, 171529, 223099, 434237, 678077, 706841, 1996297, 3993037, 6340457, 7199113, 7419761, 9000317, 13129271, 15052777, 17193217, 18436879, 18749881, 18998519, 23353469, 23689423, 33746663, 40985411, 41437751, 43547797, 51198097, 53773651, 56825687, 60207809, 62190113, 79778899, 81708353, 83019421
Offset: 1

Views

Author

Robert G. Wilson v, May 17 2011

Keywords

Comments

A008472 is the sum of the distinct primes dividing n.

Examples

			For p = 45751, p-1 = 2*3*5^3*61; 2+3+5+61=71 and p+1 = 2^3*7*19*43; 2+7+19+43 = 71.
		

Crossrefs

Subsequence of A203182.

Programs

  • Magma
    [p:p in PrimesInInterval(3,10^8)|(&+PrimeDivisors(p-1) eq &+PrimeDivisors(p+1)) and IsPrime(&+PrimeDivisors(p-1))]; // Marius A. Burtea, Nov 14 2019
  • Mathematica
    fQ[n_] := Block[{pn = Plus @@ (First@# & /@ FactorInteger[n - 1]), pp = Plus@@ (First@# & /@ FactorInteger[n + 1])}, pn == pp && PrimeQ[pn]];
    p = 2; lst = {}; While[p < 10^8, If[fQ@p, AppendTo[lst, p]; Print@p]; p =
    NextPrime@p]; lst
    pQ[n_]:=Module[{p1=Total[FactorInteger[n-1][[All,1]]],p2=Total[ FactorInteger[ n+1][[All,1]]]},p1==p2&&PrimeQ[p1]]; Select[ Prime[ Range[5*10^6]],pQ] (* Harvey P. Dale, Jun 18 2017 *)