A190732 Decimal expansion of 2/sqrt(Pi).
1, 1, 2, 8, 3, 7, 9, 1, 6, 7, 0, 9, 5, 5, 1, 2, 5, 7, 3, 8, 9, 6, 1, 5, 8, 9, 0, 3, 1, 2, 1, 5, 4, 5, 1, 7, 1, 6, 8, 8, 1, 0, 1, 2, 5, 8, 6, 5, 7, 9, 9, 7, 7, 1, 3, 6, 8, 8, 1, 7, 1, 4, 4, 3, 4, 2, 1, 2, 8, 4, 9, 3, 6, 8, 8, 2
Offset: 1
Examples
1.12837916709551257...
References
- Chi Keung Cheung et al., Getting Started with Mathematica, 2nd Ed. New York: J. Wiley (2005) p. 79.
- C. N. Pickworth, The Slide Rule, 24th Ed., Pitman, London (1945), p 53, Gauge Points.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Steven R. Finch, Mean width of a regular simplex, arxiv:1111.4976 [math.MG], 2016, mu_2.
- International Slide Rule Museum, Slide Rule Terms, Glossary and Encyclopedia, entry for "C".
- Eric Weisstein's World of Mathematics, Erf
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[2/Sqrt[Pi], 10, 100][[1]] RealDigits[Limit[2^(1 - 2 m^2) m Binomial[2 m^2, m^2], m -> Infinity], 10, 100][[1]] (* Ralf Steiner, Apr 22 2017 *)
-
PARI
2/sqrt(Pi) \\ G. C. Greubel, Jan 09 2017
Formula
Equals Sum_{n>=0} (-1)^n*Gamma((n+1)/2)/Gamma(n/2+1). - Jean-François Alcover, Jun 12 2013
Equals 1/A019704. - Michel Marcus, Jan 09 2017
Comments