cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190785 Numbers that are congruent to {0, 2, 3, 5, 7, 9, 11} mod 12.

Original entry on oeis.org

0, 2, 3, 5, 7, 9, 11, 12, 14, 15, 17, 19, 21, 23, 24, 26, 27, 29, 31, 33, 35, 36, 38, 39, 41, 43, 45, 47, 48, 50, 51, 53, 55, 57, 59, 60, 62, 63, 65, 67, 69, 71, 72, 74, 75, 77, 79, 81, 83, 84, 86, 87, 89, 91, 93, 95, 96, 98, 99, 101, 103, 105, 107, 108, 110
Offset: 1

Views

Author

Roberto Bertocco, May 26 2011

Keywords

Comments

The key-numbers of the pitches of a ascending melodic minor scale on a standard chromatic keyboard, with root = 0 and raised seventh.
First differences are period 7: repeat [1,2,2,2,2,1,2]. - Bruno Berselli, May 27 2011

Crossrefs

Cf. A083028.

Programs

  • Magma
    [n: n in [0..110] | n mod 12 in [0, 2, 3, 5, 7, 9, 11]]; // Bruno Berselli, May 27 2011
    
  • Maple
    A190785:=n->12*floor(n/7)+[0, 2, 3, 5, 7, 9, 11][(n mod 7)+1]: seq(A190785(n), n=0..100); # Wesley Ivan Hurt, Jul 21 2016
  • Mathematica
    Union[Flatten[Table[12n + {0, 2, 3, 5, 7, 9, 11}, {n, 0, 8}]]] (* Alonso del Arte, Jun 11 2011 *)
  • PARI
    a(n)=n\7*12+[0,2,3,5,7,9,11][n%7+1] \\ Charles R Greathouse IV, Jun 08 2011
    
  • Python
    def A190785(n):
        a, b = divmod(n-1,7)
        return (0,2,3,5,7,9,11)[b]+12*a # Chai Wah Wu, Jan 26 2023

Formula

a(n) = a(n-1) + a(n-7) - a(n-8) for n>8; G.f.: ( 2+x+2*x^2+2*x^3+2*x^4+2*x^5+x^6 ) / ( (x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, May 26 2011
a(n) = 2*n-floor(2*n/7)-floor(((n-4) mod 7)/5). - Rolf Pleisch, Jun 11 2011
From Wesley Ivan Hurt, Jul 21 2016: (Start)
a(n) = a(n-7) + 12 for n>7.
a(n) = (84*n - 77 - 2*(n mod 7) - 2*((n+1) mod 7) - 2*((n+2) mod 7) - 2*((n+3) mod 7) + 5*((n+4) mod 7) - 2*((n+5) mod 7) + 5*((n+6) mod 7))/49.
a(7*k) = 12*k-1, a(7*k-1) = 12*k-3, a(7*k-2) = 12*k-5, a(7*k-3) = 12*k-7, a(7*k-4) = 12*k-9, a(7*k-5) = 12*k-10, a(7*k-6) = 12*k-12. (End)

Extensions

Zero prepended by Wesley Ivan Hurt, Jul 21 2016