cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190835 Number of permutations of 6 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 0, 1, 8142, 351574834, 47940557125969, 16985819072511102549, 13519747358522016160671387, 21671513613423101256198918372909, 64311863997340571475504065539218471107, 330586922756304429697714946501284146322953006
Offset: 0

Views

Author

R. H. Hardin, May 21 2011

Keywords

Examples

			Some solutions for n=3
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2....2....2....2....2....2....2....2
..3....3....1....3....1....3....3....3....1....1....3....3....3....3....3....3
..2....2....3....2....3....2....2....1....2....3....1....1....2....2....2....1
..1....3....2....3....2....1....3....3....1....2....3....3....3....3....1....2
..2....1....3....1....3....3....1....2....3....3....2....2....2....1....3....1
..3....2....1....2....1....2....3....3....1....2....3....3....1....2....2....2
..2....1....3....3....3....1....2....2....3....3....1....1....3....3....3....3
..3....2....2....1....2....2....1....3....2....2....2....3....1....2....2....2
..1....3....3....3....3....3....2....1....3....1....1....1....3....1....1....1
..3....1....2....2....2....1....1....3....2....3....2....2....2....3....3....3
..1....2....1....3....1....3....2....1....3....1....1....3....1....2....1....1
..3....3....2....2....3....1....1....2....2....2....3....2....2....1....2....2
..1....1....3....1....2....3....3....3....1....3....2....3....1....3....1....3
..2....3....2....3....1....2....1....1....2....1....1....2....3....1....2....2
..3....1....1....1....2....1....3....2....3....3....3....1....1....2....3....3
..1....3....3....2....3....2....2....1....1....2....2....2....2....1....1....1
..2....2....1....1....1....3....3....2....3....1....3....1....3....3....3....3
		

Crossrefs

Row n=6 of A322013.

Formula

a(n) ~ sqrt(6) * 324^n * n^(5*n) / (5^n * exp(5*n + 5)). - Vaclav Kotesovec, Nov 24 2018

Extensions

a(0)=1 prepended by Seiichi Manyama, Nov 16 2018