cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A322013 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of permutations of n copies of 1..k introduced in order 1..k with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 36, 29, 1, 0, 1, 329, 1721, 182, 1, 0, 1, 3655, 163386, 94376, 1198, 1, 0, 1, 47844, 22831355, 98371884, 5609649, 8142, 1, 0, 1, 721315, 4420321081, 182502973885, 66218360625, 351574834, 56620, 1, 0
Offset: 1

Views

Author

Seiichi Manyama, Nov 24 2018

Keywords

Examples

			Square array begins:
   1, 1,     1,         1,              1,                    1, ...
   0, 1,     5,        36,            329,                 3655, ...
   0, 1,    29,      1721,         163386,             22831355, ...
   0, 1,   182,     94376,       98371884,         182502973885, ...
   0, 1,  1198,   5609649,    66218360625,     1681287695542855, ...
   0, 1,  8142, 351574834, 47940557125969, 16985819072511102549, ...
		

Crossrefs

Main diagonal gives A321666.

Programs

  • PARI
    q(n,x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!)
    T(n,k) = subst(serlaplace(q(n,x)^k), x, 1)/k! \\ Andrew Howroyd, Feb 03 2024

Formula

T(n,k) = A322093(n,k) / k!. - Andrew Howroyd, Feb 03 2024

A321666 Number of arrangements of n 1's, n 2's, ..., n n's avoiding equal consecutive terms and introduced in ascending order.

Original entry on oeis.org

1, 1, 1, 29, 94376, 66218360625, 16985819072511102549, 2421032324142610480402567434373, 271259741131895052775392614041761701799270286, 32119646666355552112999645991677870426882424139287301894021793
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2018

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = sum(i=n, n^2, i!*polcoef(sum(j=1, n, (-1)^(n-j)*binomial(n-1, j-1)*x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 27 2019

Formula

a(n) = A321634(n)/n!.
a(n) ~ exp(5/12) * n^((n-1)*(2*n-1)/2) / (2*Pi)^(n/2). - Vaclav Kotesovec, Nov 24 2018

A321669 Number of permutations of 9 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 0, 1, 2872754, 104650147201049, 23575497690601916022516, 24302858067615766089801166488125, 91155245844064069307740171414201519055298, 1046031892354833895113128900608177633584652958677057, 32119646666355552112999645991677870426882424139287301894021793
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2018

Keywords

Crossrefs

Formula

a(n) ~ 9^(7*n + 1/2) * n^(8*n) / (4480^n * exp(8*(n+1))). - Vaclav Kotesovec, Nov 24 2018

A321670 Number of permutations of 10 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 0, 1, 20824778, 7279277647839552, 19672658572012343899666292, 293736218147318801678882792470437721, 18739368045280595665934917472507368174737872589, 4204427313459831775866154680419213479057724331798640498651
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2018

Keywords

Comments

In general, for r > 1, row r of A322013 is asymptotic to r^(r*n + 1/2) * n^((r-1)*n) / ((r!)^n * exp((r-1)*(n+1))). - Vaclav Kotesovec, Nov 24 2018

Crossrefs

Formula

a(n) ~ 2^(2*n + 1/2) * 5^(8*n + 1/2) * n^(9*n) / (567^n * exp(9*(n+1))). - Vaclav Kotesovec, Nov 24 2018

A322095 Number of permutations of 7 copies of 1..n with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 0, 2, 339720, 549023310936, 4383995385521886720, 131828993822765959468851600, 12202002913678756821228939869239920, 2988325485815656468293009880545684170044800, 1723427149081248135793318785599849462668815779427840
Offset: 0

Views

Author

Seiichi Manyama, Nov 28 2018

Keywords

Crossrefs

Row 7 of A322093.

Formula

a(n) = n! * A190836(n).
a(n) = Integral_{0..infinity} (Sum_{k=1..7} (-1)^(7-k) * binomial(6, 7-k) * x^k/k!)^n * exp(-x) dx.
Showing 1-5 of 5 results.