A322013
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of permutations of n copies of 1..k introduced in order 1..k with no element equal to another within a distance of 1.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 36, 29, 1, 0, 1, 329, 1721, 182, 1, 0, 1, 3655, 163386, 94376, 1198, 1, 0, 1, 47844, 22831355, 98371884, 5609649, 8142, 1, 0, 1, 721315, 4420321081, 182502973885, 66218360625, 351574834, 56620, 1, 0
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 5, 36, 329, 3655, ...
0, 1, 29, 1721, 163386, 22831355, ...
0, 1, 182, 94376, 98371884, 182502973885, ...
0, 1, 1198, 5609649, 66218360625, 1681287695542855, ...
0, 1, 8142, 351574834, 47940557125969, 16985819072511102549, ...
- Seiichi Manyama, Antidiagonals n = 1..53, flattened
- Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, Enumeration of Labelled and Unlabelled Hamiltonian Cycles in Complete k-partite Graphs, arXiv:1709.03218 [math.CO], 2017.
- Mathematics.StackExchange, Find the number of k 1's, k 2's, ... , k n's - total kn cards, Apr 08 2012.
-
q(n,x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!)
T(n,k) = subst(serlaplace(q(n,x)^k), x, 1)/k! \\ Andrew Howroyd, Feb 03 2024
A321666
Number of arrangements of n 1's, n 2's, ..., n n's avoiding equal consecutive terms and introduced in ascending order.
Original entry on oeis.org
1, 1, 1, 29, 94376, 66218360625, 16985819072511102549, 2421032324142610480402567434373, 271259741131895052775392614041761701799270286, 32119646666355552112999645991677870426882424139287301894021793
Offset: 0
-
{a(n) = sum(i=n, n^2, i!*polcoef(sum(j=1, n, (-1)^(n-j)*binomial(n-1, j-1)*x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 27 2019
A321669
Number of permutations of 9 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.
Original entry on oeis.org
1, 0, 1, 2872754, 104650147201049, 23575497690601916022516, 24302858067615766089801166488125, 91155245844064069307740171414201519055298, 1046031892354833895113128900608177633584652958677057, 32119646666355552112999645991677870426882424139287301894021793
Offset: 0
A321670
Number of permutations of 10 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.
Original entry on oeis.org
1, 0, 1, 20824778, 7279277647839552, 19672658572012343899666292, 293736218147318801678882792470437721, 18739368045280595665934917472507368174737872589, 4204427313459831775866154680419213479057724331798640498651
Offset: 0
A322096
Number of permutations of 8 copies of 1..n with no element equal to another within a distance of 1.
Original entry on oeis.org
1, 0, 2, 2403588, 36734931452736, 3470403228952634903280, 1490944857678655357195402606800, 2315418264816304038508896461231618573280, 10937192762438008527903830198163831816546577931520
Offset: 0
Showing 1-5 of 5 results.
Comments