A190963 a(n) = 3*a(n-1) - 9*a(n-2), with a(0)=0, a(1)=1.
0, 1, 3, 0, -27, -81, 0, 729, 2187, 0, -19683, -59049, 0, 531441, 1594323, 0, -14348907, -43046721, 0, 387420489, 1162261467, 0, -10460353203, -31381059609, 0, 282429536481, 847288609443, 0, -7625597484987, -22876792454961, 0, 205891132094649
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-9).
Programs
-
Magma
[n le 2 select n-1 else 3*Self(n-1)-9*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 25 2018
-
Mathematica
LinearRecurrence[{3,-9}, {0,1}, 50]
-
PARI
my(x='x+O('x^30)); concat([0], Vec(x/(1-3*x+9*x^2))) \\ G. C. Greubel, Jan 25 2018
-
SageMath
A190963=BinaryRecurrenceSequence(3,-9,0,1) [A190963(n) for n in range(41)] # G. C. Greubel, Jan 11 2024
Formula
G.f.: x/(1-3*x+9*x^2). - Philippe Deléham, Oct 11 2011
From G. C. Greubel, Jan 11 2024: (Start)
a(n) = 3^(n-1)*ChebyshevU(n-1, 1/2).
a(n) = 3^(n-1)*A128834(n).
E.g.f.: (2/(3*sqrt(3)))*exp(3*x/2)*sin(3*sqrt(3)*x/2). (End)