A190958 a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.
0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..190
- Index entries for linear recurrences with constant coefficients, signature (2,-10).
Crossrefs
Sequences of the form a(n) = c*a(n-1) - d*a(n-2), with a(0)=0, a(1)=1:
c/d...1.......2.......3.......4.......5.......6.......7.......8.......9......10
Programs
-
Magma
I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
-
Mathematica
LinearRecurrence[{2,-10}, {0,1}, 50]
-
PARI
a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
-
SageMath
[lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022
Formula
G.f.: x / ( 1 - 2*x + 10*x^2 ). - R. J. Mathar, Jun 01 2011
E.g.f.: (1/3)*exp(x)*sin(3*x). - Franck Maminirina Ramaharo, Nov 13 2018
a(n) = 10^((n-1)/2) * ChebyshevU(n-1, 1/sqrt(10)). - G. C. Greubel, Jun 10 2022
a(n) = (1/3)*10^(n/2)*sin(n*arctan(3)) = Sum_{k=0..floor(n/2)} (-1)^k*3^(2*k)*binomial(n,2*k+1). - Gerry Martens, Oct 15 2022
Comments