A190987 a(n) = 10*a(n-1) - 5*a(n-2), with a(0)=0, a(1)=1.
0, 1, 10, 95, 900, 8525, 80750, 764875, 7245000, 68625625, 650031250, 6157184375, 58321687500, 552430953125, 5232701093750, 49564856171875, 469485056250000, 4447026281640625, 42122837535156250, 398993243943359375, 3779318251757812500, 35798216297861328125
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-5).
Crossrefs
Programs
-
Magma
[Round(5^((n-1)/2)*Evaluate(ChebyshevU(n), Sqrt(5))): n in [0..30]]; // G. C. Greubel, Sep 07 2022
-
Mathematica
LinearRecurrence[{10,-5}, {0,1}, 50]
-
SageMath
A190987 = BinaryRecurrenceSequence(10, -5, 0, 1) [A190987(n) for n in (0..30)] # G. C. Greubel, Sep 07 2022
Formula
G.f.: x/(1 - 10*x + 5*x^2). - Philippe Deléham, Oct 12 2011
E.g.f.: (1/(2*sqrt(5)))*exp(5*x)*sinh(2*sqrt(5)*x). - G. C. Greubel, Sep 07 2022