A190989 a(n) = 10*a(n-1) - 7*a(n-2), with a(0)=0, a(1)=1.
0, 1, 10, 93, 860, 7949, 73470, 679057, 6276280, 58009401, 536160050, 4955534693, 45802226580, 423333522949, 3912719643430, 36163861773657, 334249580232560, 3089348769910001, 28553740637472090, 263911964985350893, 2439243465391204300, 22545050899014586749
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-7).
Crossrefs
Cf. A190958 (index to generalized Fibonacci sequences)
Programs
-
Magma
[Round(7^((n-1)/2)*Evaluate(ChebyshevU(n), 5/Sqrt(7))): n in [0..30]]; // G. C. Greubel, Sep 15 2022
-
Mathematica
LinearRecurrence[{10,-7}, {0,1}, 50]
-
SageMath
A190989 = BinaryRecurrenceSequence(10, -7, 0, 1) [A190989(n) for n in (0..30)] # G. C. Greubel, Sep 15 2022
Formula
G.f.: x/ ( 1-10*x+7*x^2 ). - R. J. Mathar, May 26 2011
E.g.f.: (1/(3*sqrt(2)))*exp(5*x)*sinh(3*sqrt(2)*x). - G. C. Greubel, Sep 16 2022